1、简介
PCL(Point Cloud Library)中的圆柱模型分割Cylinder Model Segmentation是一种从点云数据中提取圆柱体模型的技术。它通过识别点云中符合圆柱体几何形状的部分,将圆柱体从其他几何形状中分离出来。
1.1 主要步骤
-
预处理:
- 对点云进行去噪、下采样等操作,以减少数据量并提升处理效率。
-
法线估计:
- 计算点云中每个点的法线,用于后续的模型拟合。
-
模型拟合:
- 使用RANSAC(随机采样一致性)算法拟合圆柱体模型。RANSAC通过随机采样点来估计模型参数,并评估其与点云的拟合程度。
-
分割:
- 根据拟合的圆柱体模型,将点云中符合该模型的内点(inliers)与不符合的外点(outliers)分离。
-
后处理:
- 对分割结果进行优化,如去除噪声或进一步细化圆柱体参数。
1.2 应用场景
- 工业检测:识别管道、圆柱形零件等。
- 机器人:用于导航和物体抓取。
- 建筑建模:提取建筑物中的圆柱形结构。
2、代码实现
代码为圆柱形模型运行一个样本共识分割,由于数据中存在噪声,圆柱模型并不完美。为了使示例更实际一些,将以下操作应用于输入数据集(按顺序):
-
距离大于1.5米的数据点被过滤
-
估计每个点的表面法线
-
一个平面模型(描述我们演示数据集中的表)被分割并保存到磁盘上
-
一个圆柱形模型(在我们的演示数据集中描述杯子)被分割并保存到磁盘上
2.1 cylinder_segmentation.cpp
#include <pcl/ModelCoefficients.h>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/filters/extract_indices.h>
#include <pcl/filters/passthrough.h>
#include <pcl/features/normal_3d.h>
#include <pcl/sample_consensus/method_types.h>
#include <pcl/sample_consensus/model_types.h>
#include <pcl/segmentation/sac_segmentation.h>
typedef pcl::PointXYZ PointT;
int
main ()
{
// All the objects needed
pcl::PCDReader reader;
pcl::PassThrough<PointT> pass;
pcl::NormalEstimation<PointT, pcl::Normal> ne;
pcl::SACSegmentationFromNormals<PointT, pcl::Normal> seg;
pcl::PCDWriter writer;
pcl::ExtractIndices<PointT> extract;
pcl::ExtractIndices<pcl::Normal> extract_normals;
pcl::search::KdTree<PointT>::Ptr tree (new pcl::search::KdTree<PointT> ());
// Datasets
pcl::PointCloud<PointT>::Ptr cloud (new pcl::PointCloud<PointT>);
pcl::PointCloud<PointT>::Ptr cloud_filtered (new pcl::PointCloud<PointT>);
pcl::PointCloud<pcl::Normal>::Ptr cloud_normals (new pcl::PointCloud<pcl::Normal>);
pcl::PointCloud<PointT>::Ptr cloud_filtered2 (new pcl::PointCloud<PointT>);
pcl::PointCloud<pcl::Normal>::Ptr