【PCL】Segmentation 模块—— 平面模型分割(Plane model segmentation)

1、简介

PCL(Point Cloud Library)中的平面模型分割(Plane Model Segmentation)是一种从点云数据中提取平面结构的方法。它通过识别点云中符合平面模型的点集,将场景中的平面区域分割出来。

1.1 主要步骤

  1. 选择模型:选择平面模型作为分割目标。
  2. 采样点:随机选取点云中的点用于模型拟合。
  3. 模型拟合:使用采样点拟合平面模型,通常通过最小二乘法或RANSAC算法。
  4. 内点检测:计算所有点到拟合平面的距离,距离小于阈值的点被视为内点。
  5. 分割:将内点标记为属于该平面,并从点云中移除,以便后续处理。

1.2 常用算法

  • RANSAC:鲁棒的拟合算法,能有效处理噪声和离群点。
  • 最小二乘法:适用于噪声较少的点云数据。

1.3 应用场景

  • 室内场景:提取地面、墙面等平面。
  • 机器人导航:识别可通行区域。
  • 三维重建:简化场景几何结构。

2、代码

从给定的点云数据集分割任意平面模型。
兼容性:> PCL 1.3

2.1 planar_segmentation.cpp

#include <iostream>
#include <pcl/ModelCoefficients.h>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/sample_consensus/method_types.h>
#include <pcl/sample_consensus/model_types.h>
#include <pcl/segmentation/sac_segmentation.h>

int main ()
{
   
  // 读取点云数据
  // pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
  // pcl::io::loadPCDFile<pcl::PointXYZ>("table_scene_lms400.pcd", *cloud);
  //----------------------------------
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);

  // Fill in the cloud data
  cloud->width  = 15;
  cloud->height = 1;
  cloud->points.resize (cloud->width * cloud->height);

  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值