1、简介
PCL(Point Cloud Library)中的平面模型分割(Plane Model Segmentation)是一种从点云数据中提取平面结构的方法。它通过识别点云中符合平面模型的点集,将场景中的平面区域分割出来。
1.1 主要步骤
- 选择模型:选择平面模型作为分割目标。
- 采样点:随机选取点云中的点用于模型拟合。
- 模型拟合:使用采样点拟合平面模型,通常通过最小二乘法或RANSAC算法。
- 内点检测:计算所有点到拟合平面的距离,距离小于阈值的点被视为内点。
- 分割:将内点标记为属于该平面,并从点云中移除,以便后续处理。
1.2 常用算法
- RANSAC:鲁棒的拟合算法,能有效处理噪声和离群点。
- 最小二乘法:适用于噪声较少的点云数据。
1.3 应用场景
- 室内场景:提取地面、墙面等平面。
- 机器人导航:识别可通行区域。
- 三维重建:简化场景几何结构。
2、代码
从给定的点云数据集分割任意平面模型。
兼容性:> PCL 1.3
2.1 planar_segmentation.cpp
#include <iostream>
#include <pcl/ModelCoefficients.h>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/sample_consensus/method_types.h>
#include <pcl/sample_consensus/model_types.h>
#include <pcl/segmentation/sac_segmentation.h>
int main ()
{
// 读取点云数据
// pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
// pcl::io::loadPCDFile<pcl::PointXYZ>("table_scene_lms400.pcd", *cloud);
//----------------------------------
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
// Fill in the cloud data
cloud->width = 15;
cloud->height = 1;
cloud->points.resize (cloud->width * cloud->height);