线代:1.3矩阵的逆

本课程来自深度之眼,部分截图来自课程视频。
【第一章 线性代数】1.3矩阵的逆
在线LaTeX公式编辑器

任务详解:

1、掌握矩阵逆的来源,可逆的充要条件,伴随矩阵算逆矩阵
2、掌握逆矩阵的性质

矩阵的逆(一定是方阵)

先导知识

第一部分:要计算矩阵的逆,先要有一些内容的铺垫
(i) ∣ A T ∣ = ∣ A ∣ |A^T|=|A| AT=A(行列式性质1);
(ii) ∣ λ A ∣ = λ n ∣ A ∣ |\lambda A|=\lambda ^n|A| λA=λnA
(ii) ∣ A B ∣ = ∣ A ∣ ∣ B ∣ |AB|=|A||B| AB=AB.
第二部分:
行列式|Al的各个元素的代数余子式 A i j A_{ij} Aij转置后所构成的如下矩阵
A ∗ = [ A 11 A 21 ⋯ A n 1 A 12 A 22 ⋯ A n 2 ⋮ ⋮ ⋮ A 1 n A 2 n ⋯ A n n ] A^*= \begin{bmatrix} A_{11} \quad A_{21} \cdots A_{n1} \\ A_{12} \quad A_{22} \cdots A_{n2} \\\vdots \quad\vdots \quad\vdots \\ A_{1n} \quad A_{2n}\cdots A_{nn} \end{bmatrix} A=A11A21An1A12A22An2A1nA2nAnn
称为矩阵A的伴随矩阵,简称伴随阵
A A ∗ = A ∗ A = ∣ A ∣ E (1) AA^*=A^*A=|A|E \tag{1} AA=AA=AE(1)
伴随矩阵需要注意两点:
1.伴随矩阵中的每一项代数余子式 A i j A_{ij} Aij都是实数
2.代数余子式 A i j A_{ij} Aij的下标要注意,有转置的关系
下面对公式(1)做简单的证明,先记 X = A A ∗ X=AA^* X=AA
[ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ] [ A 11 A 21 ⋯ A n 1 A 12 A 22 ⋯ A n 2 ⋮ ⋮ ⋮ A 1 n A 2 n ⋯ A n n ] \begin{bmatrix} a_{11} \quad a_{12} \cdots a_{1n} \\ a_{21} \quad a_{22} \cdots a_{2n} \\\vdots \quad\vdots \quad\vdots \\ a_{n1} \quad a_{n2}\cdots a_{nn} \end{bmatrix} \begin{bmatrix} A_{11} \quad A_{21} \cdots A_{n1} \\ A_{12} \quad A_{22} \cdots A_{n2} \\\vdots \quad\vdots \quad\vdots \\ A_{1n} \quad A_{2n}\cdots A_{nn} \end{bmatrix} a11a12a1na21a22a2nan1an2annA11A21An1A12A22An2A1nA2nAnn
以上两个矩阵相乘结果也是矩阵,我们可以计算出结果中的 X 11 X_{11} X11应该为以上矩阵第一行乘上第一列:
[ a 11 a 12 ⋯ a 1 n ] [ A 11 A 12 ⋮ A 1 n ] \begin{bmatrix} a_{11} \quad a_{12} \cdots a_{1n} \end{bmatrix}\begin{bmatrix}A_{11}\\ A_{12}\\\vdots \\ A_{1n} \end{bmatrix} [a11a12a1n]A11A12A1n
= a 11 A 11 + a 12 A 12 + ⋯ + a 1 n A 1 n =a_{11}A_{11}+a_{12}A_{12}+\cdots + a_{1n}A_{1n} =a11A11+a12A12++a1nA1n
根据行列式的展开的定理(上节中的定理3:行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和)可知,上面式子结果为:
∣ A ∣ |A| A
同理,计算 X 22 X_{22} X22应该为以上矩阵第2行乘上第2列:
[ a 21 a 22 ⋯ a 2 n ] [ A 21 A 22 ⋮ A 2 n ] \begin{bmatrix} a_{21} \quad a_{22} \cdots a_{2n} \end{bmatrix}\begin{bmatrix}A_{21}\\ A_{22}\\\vdots \\ A_{2n} \end{bmatrix} [a21a22a2n]A21A22A2n
= a 21 A 21 + a 22 A 22 + ⋯ + a 2 n A 2 n = ∣ A ∣ =a_{21}A_{21}+a_{22}A_{22}+\cdots + a_{2n}A_{2n}=|A| =a21A21+a22A22++a2nA2n=A
以此类推,X对角线上都是 ∣ A ∣ |A| A
再看其他位置,例如 X 12 X_{12} X12
[ a 11 a 12 ⋯ a 1 n ] [ A 21 A 22 ⋮ A 2 n ] \begin{bmatrix} a_{11} \quad a_{12} \cdots a_{1n} \end{bmatrix}\begin{bmatrix}A_{21}\\ A_{22}\\\vdots \\ A_{2n} \end{bmatrix} [a11a12a1n]A21A22A2n
= a 11 A 21 + a 12 A 22 + ⋯ + a 1 n A 2 n = 0 =a_{11}A_{21}+a_{12}A_{22}+\cdots + a_{1n}A_{2n}=0 =a11A21+a12A22++a1nA2n=0
这里用的上一节的推论:
在这里插入图片描述
以此类推,X的对角线位置以外的地方都是0
X = [ ∣ A ∣ 0 ⋯ 0 0 ∣ A ∣ ⋯ 0 ⋮ ⋮ ⋮ 0 0 ⋯ ∣ A ∣ ] X= \begin{bmatrix} |A| \quad 0 \cdots 0 \\ 0 \quad |A| \cdots 0 \\\vdots \quad \vdots \quad\vdots \\ 0 \quad 0 \cdots |A|\end{bmatrix} X=A000A000A
由于 ∣ A ∣ |A| A是常数,所以可以把上面的 ∣ A ∣ |A| A从矩阵中提取出来
∣ A ∣ [ 1 0 ⋯ 0 0 1 ⋯ 0 ⋮ ⋮ ⋮ 0 0 ⋯ 1 ] = ∣ A ∣ E |A|\begin{bmatrix} 1 \quad 0 \cdots 0 \\ 0 \quad 1 \cdots 0 \\\vdots \quad \vdots \quad\vdots \\ 0 \quad 0 \cdots 1\end{bmatrix}=|A|E A100010001=AE
结论得证。

逆的定义

定义7对于n阶矩阵A,如果有一个n阶矩阵B,使
A B = B A = E AB=BA=E AB=BA=E
则说矩阵A是可逆的,并把矩阵B称为A的逆矩阵,简称逆阵。
如果矩阵A是可逆的,那么A的逆阵是惟一的。这是因为:设B,C都是A的逆阵,则有
B = B E = B ( A C ) = ( B A ) C = E C = C B=BE=B(AC)=(BA)C=EC=C B=BE=B(AC)=(BA)C=EC=C
所以A的逆阵是惟一的.
A的逆阵记作 A − 1 A^{-1} A1。即若AB=BA=E,则 B = A − 1 B=A^{-1} B=A1

定理1

若矩阵A可逆,则 ∣ A ∣ ≠ 0 |A|\neq 0 A=0.
证:A可逆,即有 A − 1 A^{-1} A1,使 A A − 1 = E AA^{-1}=E AA1=E.故 ∣ A ∣ ⋅ ∣ A − 1 ∣ = ∣ E ∣ = 1 |A|·|A^{-1}|=|E|=1 AA1=E=1(这里是根据先导知识的公式3),所以 ∣ A ∣ ≠ 0 |A|\neq 0 A=0

定理2

∣ A ∣ ≠ 0 |A|\neq 0 A=0,则矩阵A可逆,且 A − 1 = 1 ∣ A ∣ A ∗ A^{-1}=\frac{1}{|A|}A^* A1=A1A,其中 A ∗ A^* A为A的伴随矩阵。
证明过程:
A A ∗ = A ∗ A = ∣ A ∣ E (1) AA^*=A^*A=|A|E \tag{1} AA=AA=AE(1)
由公式1变化,同时除以|A|(这个玩意是实数,不是矩阵,可以直接除),得:
A A ∗ ∣ A ∣ = A ∗ ∣ A ∣ A = E A\frac{A^*}{|A|}=\frac{A^*}{|A|}A=E AAA=AAA=E
根据上面逆的定义公式: A B = B A = E AB=BA=E AB=BA=E
B = A − 1 = 1 ∣ A ∣ A ∗ B=A^{-1}=\frac{1}{|A|}A^* B=A1=A1A

推论:若AB=E(或BA=E),则 B = A − 1 B=A^{-1} B=A1。这里要注意,和逆的定义中不一样的是这里的两个条件是或的关系,定义中是并且的关系。
证明法一:AB=E→|A||B|=1→|A|≠0,由上面的定理2,A可逆,再根据定义可知A的逆唯一, A − 1 = B A^{-1}=B A1=B
证明法二:AB=E→ A − 1 A B = A − 1 E A^{-1}AB=A^{-1}E A1AB=A1E E B = A − 1 E EB=A^{-1}E EB=A1E B = A − 1 B=A^{-1} B=A1

逆矩阵的性质

(i)若A可逆,则 A − 1 A^{-1} A1亦可逆,且 ( A − 1 ) − 1 = A (A^{-1})^{-1}=A (A1)1=A.
(i)若A可逆,数 λ ≠ 0 \lambda\neq0 λ=0,则 λ A \lambda A λA可逆,且 ( λ A ) − 1 = 1 λ A − 1 (\lambda A)^{-1}=\frac{1}{\lambda}A^{-1} (λA)1=λ1A1
(ii)若A,B为同阶矩阵且均可逆,则AB亦可逆,且
(AB)-1=B1A1. ( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} (AB)1=B1A1
(iv)若A可逆,则 A T A^{T} AT亦可逆,且 ( A T ) − 1 = ( A − 1 ) T (A^{T})^{-1}=(A^{-1})^{T} (AT)1=(A1)T

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

oldmao_2000

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值