概率论:3.1概率基础


本课程来自 深度之眼,部分截图来自课程视频。
【第三章 概率论】3.1概率基础
在线LaTeX公式编辑器

任务详解:

主要介绍了随机试验,样本空间,随机事件,概率的定,条件概率与乘法公式,全概率公式与贝叶斯公式,独立性等知识点。
掌握目标:
1、了解概率基本概念,掌握条件概率和乘法公式
2、掌握全概率公式和贝叶斯公式
3、掌握事件的独立性

1.随机试验,样本空间,随机事件

随机试验

1.扔硬币
E 1 E_1 E1:抛一枚硬币,观察正面H、反面T出现的情况。
E 2 E_2 E2:将一枚硬币抛掷三次,观察正面H、反面T出现的情况。
E 3 E_3 E3:将一枚硬币抛掷三次,观察出现正面的次数.
E 4 E_4 E4:抛一颗骰子,观察出现的点数.
2.投筛子

样本空间

随机试验E的所有可能结果构成的集合称为E的样本空间
对应上面四个随机试验的样本空间。
S 1 S_1 S1:{H,T};
S 2 S_2 S2:{ HHH, HHT, HTH, THH, HTT, THT, TTH, TTT);
S 3 S_3 S3:{0,1,2,3};
S 4 S_4 S4:{1,2,3,4,5,6};

随机事件

试验E的样本空间S的任意一个子集称为E的随机事件,简称事件
必然事件和不可能事件
互斥事件和对立事件(A发生,B一定不发生,A不发生,B一定发生。 P ( A ) + P ( B ) = 1 P(A)+P(B)=1 P(A)+P(B)=1

2.概率的定义

定义设E是随机试验,S是它的样本空间。对于E的每一事件A赋子一个实数,记为P(A),称为事件A的概率,如果集合函数 P ( ⋅ ) P( \cdot ) P()满足下列条件:
1°非负性:对于每一个事件A,有P(A)≥0;
2°规范性:对于必然事件S,有P(S)=1;
3°可列可加性:设 A 1 , A 2 , … A_1,A_2,… A1,A2,是两两互不相容的事件,即对于 A i A j = ϕ , i ≠ j , i , j = 1 , 2 , … A_iA_j=\phi,i\neq j,i,j=1,2,… AiAj=ϕ,i=j,i,j=1,2,,有
P ( A 1 U A 2 U ⋅ … ) = P ( A 1 ) + P ( A 2 ) + … … P(A_1UA_2 U·…)=P(A_1)+P(A_2)+…… P(A1UA2U)=P(A1)+P(A2)+
---------------------------------------------------------割你没商量1------------------------------------------------------
例1将一枚硬币抛掷三次。
(1)设事件 A 1 A_1 A1为“恰有一次出现正面”,求 P ( A 1 ) P(A_1) P(A1)
(2)设事件 A 2 A_2 A2为“至少有一次出现正面”,求 P ( A 2 ) P(A_2) P(A2).
解(1)我们考虑之前例子中E2的样本空间:
S 2 = { H H H , H H T , H T H , T H H , H T T , T H T , T T H , T T T } S_2=\{ HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\} S2={HHH,HHT,HTH,THH,HTT,THT,TTH,TTT};
A 1 = { H T T , T H T , T T H } A_1=\{HTT,THT,TTH\} A1={HTT,THT,TTH}.
S 2 S_2 S2中包含有限个元素,且由对称性知每个基本事件发生的可能性相同。故
P ( A 1 ) = 3 8 P(A_1)=\frac{3}{8} P(A1)=83
(2)由于 A 2 ˉ = { T T T } \bar{A_2}=\{TTT\} A2ˉ={TTT},于是
P ( A 2 ) = 1 − P ( A 2 ˉ ) = 1 − 1 8 = 7 8 P(A_2)=1-P(\bar{A_2})=1-\frac{1}{8}=\frac{7}{8} P(A2)=1P(A2ˉ)=181=87
---------------------------------------------------------割你没商量1------------------------------------------------------

3.条件概率与乘法公式

引例:将一枚硬币抛掷两次,观察其出现正反面的情况.设事件A为“至少有一次为H”,事件B为“两次掷出同一面”.现在来求已知事件A已经发生的条件下事件B发生的概率.
解: S = { H H , H T , T H , T T } , A = { H H , H T , T H } , B = { H H , T T } S=\{HH,HT,TH,TT\},A=\{HH,HT,TH\},B=\{HH,TT\} S={HH,HT,TH,TT},A={HH,HT,TH},B={HH,TT}
所以 P ( B ∣ A ) = 1 3 P(B|A)=\cfrac{1}{3} P(BA)=31
P ( A B ) = 1 4 , P ( A ) = 3 4 P(AB)=\cfrac{1}{4},P(A)=\cfrac{3}{4} P(AB)=41,P(A)=43
P ( A B ) P ( A ) = 1 3 \cfrac{P(AB)}{P(A)}=\cfrac{1}{3} P(A)P(AB)=31
定义设A,B是两个事件,且 P ( A ) > 0 P(A)>0 P(A)>0,称
P ( B ∣ A ) = P ( A B ) P ( A ) P(B|A)=\frac{P(AB)}{P(A)} P(BA)=P(A)P(AB)
为在事件A发生的条件下事件B发生的条件概率。
乘法公式:
P ( A B ) = P ( B ∣ A ) P ( A ) P(AB)=P(B|A)P(A) P(AB)=P(BA)P(A)
P ( A B C ) = P ( C ∣ A B ) P ( B ∣ A ) P ( A ) P(ABC)=P(C|AB)P(B|A)P(A) P(ABC)=P(CAB)P(BA)P(A)
P ( A 1 A 2 ⋯ A n ) = P ( A n ∣ A 1 A 2 ⋯ A n − 1 ) P ( A n − 1 ∣ A 1 A 2 ⋯ A n − 2 ) ⋯ P ( A 2 ∣ A 1 ) P ( A 1 ) P(A_1A_2\cdots A_n)=P(A_n|A_1A_2\cdots A_{n-1})P(A_{n-1}|A_1A_2\cdots A_{n-2})\cdots P(A_2|A_1)P(A_1) P(A1A2An)=P(AnA1A2An1)P(An1A1A2An2)P(A2A1)P(A1)
---------------------------------------------------------割你没商量2------------------------------------------------------
例4设某光学仪器厂制造的透镜,第一次落下时打破的概率为1/2,若第一次落下未打破,第二次落下打破的概率为7/10,若前两次落下未打破,第三次落下打破的概率为9/10。试求透镜落下三次而未打破的概率。
解:以 A i ( i = 1 , 2 , 3 ) A_i(i=1,2,3) Ai(i=1,2,3)表示事件“透镜第i次落下打破”,以B表示事件“透镜落下三次而未打破”.因为 B = A 1 ˉ A 2 ˉ A 3 ˉ B=\bar{A_1}\bar{A_2}\bar{A_3} B=A1ˉA2ˉA3ˉ,故有
P ( B ) = P ( A 1 ˉ A 2 ˉ A 3 ˉ ) = P ( A 3 ˉ ∣ A 1 ˉ A 2 ˉ ) P ( A 2 ˉ ∣ A 1 ˉ ) P ( A 1 ˉ ) = ( 1 − 9 10 ) ( 1 − 7 10 ) ( 1 − 1 2 ) = 3 200 P(B)=P(\bar{A_1}\bar{A_2}\bar{A_3})=P(\bar{A_3}|\bar{A_1}\bar{A_2})P(\bar{A_2}|\bar{A_1})P(\bar{A_1})=(1-\frac{9}{10})(1-\frac{7}{10})(1-\frac{1}{2})=\frac{3}{200} P(B)=P(A1ˉA2ˉA3ˉ)=P(A3ˉA1ˉA2ˉ)P(A2ˉA1ˉ)P(A1ˉ)=(1109)(1107)(121)=2003
---------------------------------------------------------割你没商量2------------------------------------------------------

4.全概率公式与贝叶斯公式

全概率公式

定理设试验E的样本空间为S,A为E的事件, B 1 , B 2 , … , B n B_1,B_2,…,B_n B1,B2,,Bn为S的一个划分( S = B 1 ∪ B 2 ∪ . . . ∪ B n S=B_1\cup B2\cup...\cup B_n S=B1B2...Bn),且 P ( B i ) > 0 ( i = 1 , 2 , … , n ) P(B_i)>0(i=1,2,…,n) P(Bi)>0(i=1,2,,n),则
P ( A ) = P ( A ∩ S ) = P ( A ∩ ( B 1 ∪ B 2 ∪ . . . ∪ B n ) ) P(A)=P(A\cap S)=P(A \cap (B_1\cup B2\cup...\cup B_n)) P(A)=P(AS)=P(A(B1B2...Bn))
= P [ ( A ∩ B 1 ) ∪ ( A ∩ B 2 ) ∪ . . . ∪ ( A ∩ B n ) =P[(A \cap B_1)\cup(A \cap B_2)\cup...\cup(A \cap B_n) =P[(AB1)(AB2)...(ABn)
= P ( A B 1 ) + P ( A B 2 ) + . . . + P ( A B n ) =P(A B_1)+P(A B_2)+...+P(A B_n) =P(AB1)+P(AB2)+...+P(ABn)
P ( A ) = P ( A ∣ B 1 ) P ( B 1 ) + P ( A ∣ B 2 ) P ( B 2 ) + . . . + P ( A ∣ B n ) P ( B n ) P(A)=P(A|B_1)P(B_1)+P(A|B_2)P(B_2)+...+P(A|B_n)P(B_n) P(A)=P(AB1)P(B1)+P(AB2)P(B2)+...+P(ABn)P(Bn)
---------------------------------------------------------割你没商量3------------------------------------------------------
例6据美国的一份资料报导,在美国总的来说患肺癌的概率约为0.1%,在人群中有20%是吸烟者,他们患肺癌的概率约为0.4%,求不吸者患肺癌的概率是多少?
解;以C记事件“患肺癌”,以A记事件“吸烟”,按题意
P©=0.001,P(A)=0.20,P(C|A)=0.004
.需要求条件概率 P ( C ∣ A ˉ ) P(C|\bar{A}) P(CAˉ),由全概率公式有
P ( C ) = P ( C I A ) P ( A ) + P ( C ∣ A ˉ ) P ( A ˉ ) P(C)=P(CIA)P(A)+P(C|\bar{A})P(\bar{A}) P(C)=P(CIA)P(A)+P(CAˉ)P(Aˉ)
0.001 = 0.004 × 0.20 + P ( C ∣ A ˉ ) P ( A ˉ ) 0.001=0.004×0.20+P(C|\bar{A})P(\bar{A}) 0.001=0.004×0.20+P(CAˉ)P(Aˉ)
= 0.004 × 0.20 + P ( C ∣ A ˉ ) × 0.80 → P ( C ∣ A ˉ ) = 0.00025 =0.004×0.20+P(C|\bar{A})×0.80\to P(C|\bar{A})=0.00025 =0.004×0.20+P(CAˉ)×0.80P(CAˉ)=0.00025
---------------------------------------------------------割你没商量3------------------------------------------------------

贝叶斯公式

定理设试验E的样本空间为S,A为E的事件, B 1 , B 2 , … , B n B_1,B_2,…,B_n B1,B2,,Bn为S的一个划分,且 P ( A ) > 0 , P ( B i ) > 0 ( i = 1 , 2 , … , n ) P(A)>0,P(B_i)>0(i=1,2,…,n) P(A)>0P(Bi)>0(i=1,2,,n),则
P ( B i ∣ A ) = P ( A ∣ B i ) P ( B i ) ∑ j = 1 n P ( A ∣ B j ) P ( B j ) , i = 1 , 2 , … , n . P(B_i|A)=\frac{P(A|B_i)P(B_i)}{\sum_{j=1}^nP(A|B_j)P(B_j)},i=1,2,…,n. P(BiA)=j=1nP(ABj)P(Bj)P(ABi)P(Bi),i=1,2,,n.
---------------------------------------------------------割你没商量4------------------------------------------------------
例7对以往数据分析结果表明,当机器调整得良好时,产品的合格率为98%,而当机器发生某种故障时,其合格率为55%.每天早上机器开动时,机器调整良好的概率为95%。试求已知某日早上第一件产品是合格品时,机器调整良好的概率是多少?
解:设A为事件“产品合格”,B为事件“机器调整良好”。
已知 P ( A ∣ B ) = 0.98 P(A|B)=0.98 P(AB)=0.98 P ( A ∣ B ˉ ) = 0.55 P(A|\bar{B})=0.55 P(ABˉ)=0.55 P ( B ) = 0.95 P(B)=0.95 P(B)=0.95 P ( B ˉ ) = 0.05 P(\bar{B})=0.05 P(Bˉ)=0.05,所需求的概率为 P ( B ∣ A ) P(B|A) P(BA).由贝叶斯公式
P ( B ∣ A ) = P ( A ∣ B ) P ( B ) P ( A ∣ B ) P ( B ) + P ( A ∣ B ˉ ) P ( B ˉ ) P(B|A)=\frac{P(A|B)P(B)}{P(A|B)P(B)+P(A|\bar{B})P(\bar{B})} P(BA)=P(AB)P(B)+P(ABˉ)P(Bˉ)P(AB)P(B)
= 0.98 × 0.95 0.98 × 0.95 + 0.55 × 0.05 = 0.97 =\frac{0.98×0.95}{0.98×0.95+0.55×0.05}=0.97 =0.98×0.95+0.55×0.050.98×0.95=0.97
---------------------------------------------------------割你没商量4------------------------------------------------------
这就是说,当生产出第一件产品是合格品时,此时机器调整良好的概率为0.97。这里,概率0.95是由以往的数据分析得到的,叫做先验概率。而在得到信息(即生产出的第一件产品是合格品)之后再重新加以修正的概率(即0.97)叫做后验概率。有了后验概率我们就能对机器的情况有进一步的了解。

5.独立性

P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B)则称A与B独立。
抛两次硬币,事件A为第一次出现正面事件B为第二次出现正面。
两次硬币={HH,HT,TH,TT}
A={HH,HT}
B={TH,TT}
P ( A ) = 2 4 = 1 2 , P ( B ) = 2 4 = 1 2 P(A)=\cfrac{2}{4}=\cfrac{1}{2},P(B)=\cfrac{2}{4}=\cfrac{1}{2} P(A)=42=21,P(B)=42=21

P ( B ∣ A ) = 1 2 , P ( A B ) = 1 4 P(B|A)=\cfrac{1}{2},P(AB)=\cfrac{1}{4} P(BA)=21,P(AB)=41
或者说: P ( B ) = P ( B ∣ A )   o r   P ( A ) = P ( A ∣ B ) P(B)=P(B|A)\space or \space P(A)=P(A|B) P(B)=P(BA) or P(A)=P(AB)
说人话:B的发生与A发不发生没有关系,也就是求在A发生的条件下B发生的概率和单独求B发生概率一样,A的发生作为条件的时候不影响B的发生概率。

定理一设A,B是两事件,且 P ( A ) > 0 P(A)>0 P(A)>0.若A,B相互独立,则 P ( B ∣ A ) = P ( B ) . P(B|A)=P(B). P(BA)=P(B).反之亦然.
定理二若事件A与B相互独立,则下列各对事件也相互独立:
A 与 B ˉ , A ˉ 与 B , A ˉ 与 B ˉ A与\bar{B},\bar{A}与B,\bar{A}与\bar{B} ABˉAˉBAˉBˉ
---------------------------------------------------------割你没商量5------------------------------------------------------
证明一下定理二中的第一个: A 与 B ˉ A与\bar{B} ABˉ
根据全概率公式,先写出来:
P ( A ) = P ( A ∣ B ) P ( B ) + P ( A ∣ B ˉ ) P ( B ˉ ) P(A)=P(A|B)P(B)+P(A|\bar{B})P(\bar{B}) P(A)=P(AB)P(B)+P(ABˉ)P(Bˉ)
根据乘法公式:
P ( A ) = P ( A B ) + P ( A B ˉ ) P(A)=P(AB)+P(A\bar{B}) P(A)=P(AB)+P(ABˉ)
由于A,B独立:
P ( A ) = P ( A ) P ( B ) + P ( A B ˉ ) P(A)=P(A)P(B)+P(A\bar{B}) P(A)=P(A)P(B)+P(ABˉ)
移项:
P ( A ) − P ( A ) P ( B ) = P ( A B ˉ ) P(A)-P(A)P(B)=P(A\bar{B}) P(A)P(A)P(B)=P(ABˉ)
P ( A ) ( 1 − P ( B ) ) = P ( A B ˉ ) P(A)(1-P(B))=P(A\bar{B}) P(A)(1P(B))=P(ABˉ)
P ( A ) P ( B ˉ ) = P ( A B ˉ ) P(A)P(\bar{B})=P(A\bar{B}) P(A)P(Bˉ)=P(ABˉ)
A 与 B ˉ A与\bar{B} ABˉ独立
---------------------------------------------------------割你没商量5------------------------------------------------------

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

oldmao_2000

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值