【概率论】3.1概率基础:随机事件和概率

1.概率基本概念

1.随机试验、样本空间、随机事件

随机试验:扔硬币、掷骰子

试验描述
E 1 E1 E1抛掷一枚硬币,观察正面 H H H、反面 T T T出现的情况
E 2 E2 E2将一枚硬币抛掷三次,观察正面 H H H、反面 T T T出现的情况
E 3 E3 E3将一枚硬币抛掷三次,观察正面 H H H的次数
E 4 E4 E4抛掷一枚硬币,观察出现的点数

样本空间:随机试验E的所有可能结果构成的集合称为E的样本空间

样本空间描述
S 1 S1 S1 { H , T } \{H,T\} {H,T}
S 1 S1 S1 { H H H , H H T , H T H , T H H , H T T , T H T , T T H , T T T } \{HHH,HHT,HTH,THH,HTT,THT,TTH,TTT\} {HHH,HHT,HTH,THH,HTT,THT,TTH,TTT}
S 1 S1 S1 { 0 , 1 , 2 , 3 } \{0,1,2,3\} {0,1,2,3}
S 1 S1 S1 { 1 , 2 , 3 , 4 , 5 , 6 } \{1,2,3,4,5,6\} {1,2,3,4,5,6}

随机事件:试验 E E E的样本空间 S S S的任意一个子集称为 E E E的随机事件,简称事件.

2.概率

定义  设 E E E是随机试验, S S S是它的样本空间,对于 E E E的每一事件 A A A赋予一个实数,记为 P ( A ) P(A) P(A),称为事件 A A A概率,如果集合函数 P ( ⋅ ) P(\centerdot ) P()满足下列条件:

  1. 非负性:对于每一个事件 A A A,有 P ( A ) ≥ 0 P(A)\geq0 P(A)0
  2. 规范性:对于必然事件 S S S,有 P ( S ) = 1 P(S)=1 P(S)=1
  3. 可列可加性:设 A 1 , A 2 , ⋯ {\mathrm A}_1,{\mathrm A}_2,\cdots A1,A2,是两两互不相容的事件,即对于 A i A j = ∅ , i ≠ j , i , j , = 1 , 2 , ⋯ {\mathrm A}_i{\mathrm A}_{\mathrm j}=\varnothing,i\neq j,i,j,=1,2,\cdots AiAj=,i=j,i,j,=1,2, P ( A 1 ∪ A 2 ∪ ⋯   ) = P ( A 1 ) + P ( A 2 ) + ⋯ P\left(A_1\cup A_2\cup\cdots\right)=P\left(A_1\right)+P\left(A_2\right)+\cdots P(A1A2)=P(A1)+P(A2)+

2.事件的关系与运算

1.事件关系

(1) 子事件: A ⊂ B A \subset B AB,若 A A A发生,则 B B B发生。

(2) 相等事件: A = B A = B A=B,即 A ⊂ B A \subset B AB,且 B ⊂ A B \subset A BA

(3) 和事件: A ⋃ B A\bigcup B AB(或 A + B A + B A+B), A A A B B B中至少有一个发生。

(4) 差事件: A − B A - B AB A A A发生但 B B B不发生。

(5) 积事件: A ⋂ B A\bigcap B AB(或 A B {AB} AB), A A A B B B同时发生。

(6) 互斥事件(互不相容): A ⋂ B A\bigcap B AB= ∅ \varnothing

(7) 互逆事件(对立事件): A ⋂ B = ∅ , A ⋃ B = Ω , A = B ˉ , B = A ˉ A\bigcap B=\varnothing ,A\bigcup B=\Omega ,A=\bar{B},B=\bar{A} AB=,AB=Ω,A=Bˉ,B=Aˉ

2.运算律

(1) 交换律: A ⋃ B = B ⋃ A , A ⋂ B = B ⋂ A A\bigcup B=B\bigcup A,A\bigcap B=B\bigcap A AB=BA,AB=BA
(2) 结合律: ( A ⋃ B ) ⋃ C = A ⋃ ( B ⋃ C ) (A\bigcup B)\bigcup C=A\bigcup (B\bigcup C) (AB)C=A(BC)
(3) 分配律: ( A ⋂ B ) ⋂ C = A ⋂ ( B ⋂ C ) (A\bigcap B)\bigcap C=A\bigcap (B\bigcap C) (AB)C=A(BC)

(4)德摩根律 A ⋃ B ‾ = A ˉ ⋂ B ˉ \overline{A\bigcup B}=\bar{A}\bigcap \bar{B} AB=AˉBˉ A ⋂ B ‾ = A ˉ ⋃ B ˉ \overline{A\bigcap B}=\bar{A}\bigcup \bar{B} AB=AˉBˉ

3.完全事件组

A 1 A 2 ⋯ A n {{A}_{1}}{{A}_{2}}\cdots {{A}_{n}} A1A2An两两互斥,且和事件为必然事件,即 A i ∩ A i = ∅ , i ≠ j , ⋃ i = 1 n = Ω A_i\cap A_i=\varnothing,i\neq j,\bigcup_{i=1}^n=\Omega AiAi=i=j,i=1n=Ω

3.概率的基本公式

1.条件概率

P ( B ∣ A ) = P ( A B ) P ( A ) P(B|A)=\frac{P(AB)}{P(A)} P(BA)=P(A)P(AB),表示 A A A发生的条件下, B B B发生的概率。

2.全概率公式

P ( A ) = ∑ i = 1 n P ( A ∣ B i ) P ( B i ) = P ( A ∣ B 1 ) P ( B 1 ) + P ( A ∣ B 2 ) P ( B 2 ) + ⋯ + , B i B j = ∅ , i ≠ j , ⋃ n i = 1   B i = Ω P\left( A \right) =\sum\limits_{i=1}^n{P\left( A|B_i \right) P\left( B_i \right) =P\left( A|B_1 \right) P\left( B_1 \right) +P\left( A|B_2 \right) P\left( B_2 \right) +\cdots +,B_iB_j}=\varnothing ,i\ne j,\underset{i=1}{\overset{n}{\bigcup{}}}\,B_i=\Omega P(A)=i=1nP(ABi)P(Bi)=P(AB1)P(B1)+P(AB2)P(B2)++,BiBj=,i=j,i=1nBi=Ω

3.Bayes 公式

P ( B j ∣ A ) = P ( A ∣ B j ) P ( B j ) ∑ i = 1 n P ( A ∣ B i ) P ( B i ) , j = 1 , 2 , ⋯   , n P({{B}_{j}}|A)=\frac{P(A|{{B}_{j}})P({{B}_{j}})}{\sum\limits_{i=1}^{n}{P(A|{{B}_{i}})P({{B}_{i}})}},j=1,2,\cdots ,n P(BjA)=i=1nP(ABi)P(Bi)P(ABj)P(Bj),j=1,2,,n
注:上述公式中事件 B i {{B}_{i}} Bi的个数可为可列个。

4.乘法公式

P ( A 1 A 2 ) = P ( A 1 ) P ( A 2 ∣ A 1 ) = P ( A 2 ) P ( A 1 ∣ A 2 ) P({{A}_{1}}{{A}_{2}})=P({{A}_{1}})P({{A}_{2}}|{{A}_{1}})=P({{A}_{2}})P({{A}_{1}}|{{A}_{2}}) P(A1A2)=P(A1)P(A2A1)=P(A2)P(A1A2)

P ( A 1 A 2 ⋯ A n ) = P ( A 1 ) P ( A 2 ∣ A 1 ) P ( A 3 ∣ A 1 A 2 ) ⋯ P ( A n ∣ A 1 A 2 ⋯ A n − 1 ) P({{A}_{1}}{{A}_{2}}\cdots {{A}_{n}})=P({{A}_{1}})P({{A}_{2}}|{{A}_{1}})P({{A}_{3}}|{{A}_{1}}{{A}_{2}})\cdots P({{A}_{n}}|{{A}_{1}}{{A}_{2}}\cdots {{A}_{n-1}}) P(A1A2An)=P(A1)P(A2A1)P(A3A1A2)P(AnA1A2An1)

4.独立性

1.事件的独立性

(1) A A A B B B相互独立 ⇔ P ( A B ) = P ( A ) P ( B ) \Leftrightarrow P(AB)=P(A)P(B) P(AB)=P(A)P(B)

(2) A A A B B B C C C两两独立
⇔ P ( A B ) = P ( A ) P ( B ) \Leftrightarrow P(AB)=P(A)P(B) P(AB)=P(A)P(B); P ( B C ) = P ( B ) P ( C ) P(BC)=P(B)P(C) P(BC)=P(B)P(C) ; P ( A C ) = P ( A ) P ( C ) P(AC)=P(A)P(C) P(AC)=P(A)P(C);

(3) A A A B B B C C C相互独立
⇔ P ( A B ) = P ( A ) P ( B ) \Leftrightarrow P(AB)=P(A)P(B) P(AB)=P(A)P(B); P ( B C ) = P ( B ) P ( C ) P(BC)=P(B)P(C) P(BC)=P(B)P(C) ;
P ( A C ) = P ( A ) P ( C ) P(AC)=P(A)P(C) P(AC)=P(A)P(C) ; P ( A B C ) = P ( A ) P ( B ) P ( C ) P(ABC)=P(A)P(B)P(C) P(ABC)=P(A)P(B)P(C)

2.独立重复试验

将某试验独立重复 n n n次,若每次实验中事件 A 发生的概率为 p p p,则 n n n次试验中 A A A发生 k k k次的概率为:
P ( X = k ) = C n k p k ( 1 − p ) n − k P(X=k)=C_{n}^{k}{{p}^{k}}{{(1-p)}^{n-k}} P(X=k)=Cnkpk(1p)nk

3.重要公式与结论

( 1 ) P ( A ˉ ) = 1 − P ( A ) (1)P(\bar{A})=1-P(A) (1)P(Aˉ)=1P(A)

( 2 ) P ( A ⋃ B ) = P ( A ) + P ( B ) − P ( A B ) (2)P(A\bigcup B)=P(A)+P(B)-P(AB) (2)P(AB)=P(A)+P(B)P(AB)
P ( A ⋃ B ⋃ C ) = P ( A ) + P ( B ) + P ( C ) − P ( A B ) − P ( B C ) − P ( A C ) + P ( A B C ) P(A\bigcup B\bigcup C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P(ABC) P(ABC)=P(A)+P(B)+P(C)P(AB)P(BC)P(AC)+P(ABC)

( 3 ) P ( A − B ) = P ( A ) − P ( A B ) (3)P(A-B)=P(A)-P(AB) (3)P(AB)=P(A)P(AB)

( 4 ) P ( A B ˉ ) = P ( A ) − P ( A B ) , P ( A ) = P ( A B ) + P ( A B ˉ ) , (4)P(A\bar{B})=P(A)-P(AB),P(A)=P(AB)+P(A\bar{B}), (4)P(ABˉ)=P(A)P(AB),P(A)=P(AB)+P(ABˉ),
P ( A ⋃ B ) = P ( A ) + P ( A ˉ B ) = P ( A B ) + P ( A B ˉ ) + P ( A ˉ B ) P(A\bigcup B)=P(A)+P(\bar{A}B)=P(AB)+P(A\bar{B})+P(\bar{A}B) P(AB)=P(A)+P(AˉB)=P(AB)+P(ABˉ)+P(AˉB)

(5)条件概率 P ( ⋅ ∣ B ) P(\centerdot |B) P(B)满足概率的所有性质,
例如:. P ( A ˉ 1 ∣ B ) = 1 − P ( A 1 ∣ B ) P({{\bar{A}}_{1}}|B)=1-P({{A}_{1}}|B) P(Aˉ1B)=1P(A1B)
P ( A 1 ⋃ A 2 ∣ B ) = P ( A 1 ∣ B ) + P ( A 2 ∣ B ) − P ( A 1 A 2 ∣ B ) P({{A}_{1}}\bigcup {{A}_{2}}|B)=P({{A}_{1}}|B)+P({{A}_{2}}|B)-P({{A}_{1}}{{A}_{2}}|B) P(A1A2B)=P(A1B)+P(A2B)P(A1A2B)
P ( A 1 A 2 ∣ B ) = P ( A 1 ∣ B ) P ( A 2 ∣ A 1 B ) P({{A}_{1}}{{A}_{2}}|B)=P({{A}_{1}}|B)P({{A}_{2}}|{{A}_{1}}B) P(A1A2B)=P(A1B)P(A2A1B)

(6)若 A 1 , A 2 , ⋯   , A n {{A}_{1}},{{A}_{2}},\cdots ,{{A}_{n}} A1,A2,,An相互独立,则 P ( ⋂ i = 1 n A i ) = ∏ i = 1 n P ( A i ) , P(\bigcap\limits_{i=1}^{n}{{{A}_{i}}})=\prod\limits_{i=1}^{n}{P({{A}_{i}})}, P(i=1nAi)=i=1nP(Ai),
P ( ⋃ i = 1 n A i ) = ∏ i = 1 n ( 1 − P ( A i ) ) P(\bigcup\limits_{i=1}^{n}{{{A}_{i}}})=\prod\limits_{i=1}^{n}{(1-P({{A}_{i}}))} P(i=1nAi)=i=1n(1P(Ai))

(7)互斥、互逆与独立性之间的关系:
A A A B B B互逆 ⇒ \Rightarrow A A A B B B互斥,但反之不成立, A A A B B B互斥(或互逆)且均非零概率事件 ⇒ \Rightarrow A A A B B B不独立.

(8)若 A 1 , A 2 , ⋯   , A m , B 1 , B 2 , ⋯   , B n {{A}_{1}},{{A}_{2}},\cdots ,{{A}_{m}},{{B}_{1}},{{B}_{2}},\cdots ,{{B}_{n}} A1,A2,,Am,B1,B2,,Bn相互独立,则 f ( A 1 , A 2 , ⋯   , A m ) f({{A}_{1}},{{A}_{2}},\cdots ,{{A}_{m}}) f(A1,A2,,Am) g ( B 1 , B 2 , ⋯   , B n ) g({{B}_{1}},{{B}_{2}},\cdots ,{{B}_{n}}) g(B1,B2,,Bn)也相互独立,其中 f ( ⋅ ) , g ( ⋅ ) f(\centerdot ),g(\centerdot ) f(),g()分别表示对相应事件做任意事件运算后所得的事件,另外,概率为 1(或 0)的事件与任何事件相互独立.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值