全概率公式及贝叶斯公式---先验概率、后验概率

1. 全概率公式

设实验 E E E的样本空间为 S S S A A A为实验 E E E的事件, B 1 B_1 B1, B 2 B_2 B2…… B n B_n Bn为样本空间S的划分(互斥),且 P ( B i ) > 0 P(B_i)>0 P(Bi)>0, i ∈ N ∗ i\in N^* iN,则:
P ( A ) = P ( A ∣ B 1 ) P ( B 1 ) + P ( A ∣ B 2 ) P ( B 2 ) + . . . P(A)=P(A|B_1)P(B_1)+P(A|B_2)P(B_2)+... P(A)=P(AB1)P(B1)+P(AB2)P(B2)+...

解析: P ( A ∣ B 1 ) P(A|B_1) P(AB1)即事件A发生且落在样本空间 B 1 B_1 B1中的概率。因为 P ( A ) = P ( A ∩ S ) P(A)=P(A\cap S) P(A)=P(AS), P ( A ∩ S ) = P ( A ∩ B 1 ) + P ( A ∩ B 2 ) + . . . = P ( A B 1 ) + P ( A B 2 ) + . . . P(A\cap S)=P(A\cap B_1)+P(A\cap B_2)+...=P(AB_1)+P(AB_2)+... P(AS)=P(AB1)+P(AB2)+...=P(AB1)+P(AB2)+....
其中, P ( A B 1 ) = P ( A ∣ B 1 ) P ( B 1 ) P(AB_1)=P(A|B_1)P(B_1) P(AB1)=P(AB1)P(B1),落在 B 1 B_1 B1空间的概率乘以A在 B 1 B_1 B1上发生的概率,其余类推。

例1 据美国的一份资料报导,在美国来说患肺癌的概率约为0.1%,在人群中有20%是吸烟者,他们患肺癌的率约为0.4%,求不吸者患肺癌的概率是多少?

解:
全概率空间为患肺癌 E E E和不患肺癌 E ‾ \overline{E} E之和,吸烟和患肺癌分别设为事件A、C。
C C C为患肺癌, C ‾ \overline{C} C为不患肺癌, P ( C ) = 0.001 , P ( A ) = 0.2 P(C)=0.001,P(A)=0.2 P(C)=0.001,P(A)=0.2
吸烟者中0.4%患癌: P ( C ∣ A ) = 0.004 P(C|A)=0.004 P(CA)=0.004, P ( A ‾ ) = 0.8 P(\overline{A})=0.8 P(A)=0.8
P ( C ) = P ( C ∣ A ) P ( A ) + P ( C ∣ A ‾ ) P ( A ‾ ) P(C)=P(C|A)P(A)+P(C|\overline{A})P(\overline{A}) P(C)=P(CA)P(A)+P(CA)P(A)
0.001 = 0.004 ∗ 0.2 + P ( C ∣ A ‾ ) P ( A ‾ ) 0.001=0.004*0.2+P(C|\overline{A})P(\overline{A}) 0.001=0.0040.2+P(CA)P(A)
P ( C ∣ A ‾ ) P ( A ‾ ) = 0.0002 P(C|\overline{A})P(\overline{A})=0.0002 P(CA)P(A)=0.0002
P ( C ∣ A ‾ ) = 0.00025 P(C|\overline{A})=0.00025 P(CA)=0.00025(不吸者患肺癌的概率)

2.贝叶斯公式

设实验E的样本空间为S,A为E的事件, B 1 B_1 B1, B 2 B_2 B2…… B n B_n Bn为样本空间S的划分(互斥),且 P ( A ) > 0 , P ( B i ) > 0 P(A)>0, P(B_i)>0 P(A)>0,P(Bi)>0, i ∈ N ∗ i\in N^* iN,则:
P ( B i ∣ A ) = P ( A ∣ B i ) P ( B i ) ∑ j = 1 n P ( A ∣ B j ) P ( B j ) P(B_i|A)=\frac{P(A|B_i)P(B_i)}{\displaystyle \sum^{n}_{j=1}P(A|B_j)P(B_j)} P(BiA)=j=1nP(ABj)P(Bj)P(ABi)P(Bi)
解析: P ( B i ∣ A ) = P ( A B i ) P ( A ) P(B_i|A)=\frac{P(AB_i)}{P(A)} P(BiA)=P(A)P(ABi),
分子: P ( A B i ) = P ( A ∣ B i ) P ( B i ) P(AB_i)=P(A|B_i)P(B_i) P(ABi)=P(ABi)P(Bi) P ( B i ∣ A ) P(B_i|A) P(BiA)即A发生在 B i B_i Bi空间内的概率。
分母: P ( A ) = P ( A ∣ B 1 ) P ( B 1 ) + P ( A ∣ B 2 ) P ( B 2 ) + . . . P(A)=P(A|B_1)P(B_1)+P(A|B_2)P(B_2)+... P(A)=P(AB1)P(B1)+P(AB2)P(B2)+...,即全概率公式展开。

例2 对以往数据分析结果表明,当机器调整得良好时,产品的合格率为98%,而当机器发生某种故障时,其合格率为55%。每天早上机器开动时,机器调整良好的概率为95%,试求已知某日早上第一件产品是合格品时,机器调整良好的概率是多少?

解:
设“产品合格”为A,“机器良好”为B
当机器调整得良好时,产品的合格率为98%: P ( A ∣ B ) = 0.98 P(A|B)=0.98 P(AB)=0.98
当机器发生某种故障时,其合格率为55%: P ( A ∣ B ‾ ) = 0.55 P(A|\overline{B})=0.55 P(AB)=0.55
机器调整良好的概率为95%: P ( B ) = 0.95 P(B)=0.95 P(B)=0.95
产品是合格品时,机器调整良好的概率: P ( B ∣ A ) P(B|A) P(BA)
由贝叶斯公式得:
分母为A的全概率:
P ( A ∣ B ) P ( B ) + P ( A ∣ B ‾ ) P ( B ‾ ) = 0.98 × 0.95 + 0.55 × 0.05 = 0.9585 P(A|B)P(B)+P(A|\overline{B})P(\overline{B})=0.98\times 0.95+0.55\times0.05=0.9585 P(AB)P(B)+P(AB)P(B)=0.98×0.95+0.55×0.05=0.9585
分子为AB同时发生的概率: P ( A B ) = P ( A ∣ B ) P ( B ) = 0.98 × 0.95 = 0.931 P(AB)=P(A|B)P(B)=0.98\times0.95=0.931 P(AB)=P(AB)P(B)=0.98×0.95=0.931
P ( B ∣ A ) = 0.931 0.9585 = 0.9713 P(B|A)=\frac{0.931}{0.9585}=0.9713 P(BA)=0.95850.931=0.9713

关于先验概率和后验概率

例2中,每天早上机器开动时,机器调整良好的概率为95%,因为是在没有进行概率计算前就得到了,可以作为概率计算条件,所以叫先验概率(prior probability)
在得到这个先验概率后,通过计算再反映出先验概率反映的情况的概率是后验概率(posterior probability)
先验概率反映了历史的信息,后验概率由于是通过先验概率进行计算后推出当前的信息,所以反映的是当下的信息。

关于空事件、平凡事件

空事件(empty event)即不会发生的事件,记作 ∅ \emptyset P ( ∅ ) = 0 P(\emptyset)=0 P()=0
平凡事件(trivial event)即所有可能发生的事件,记作 Ω \Omega Ω P ( Ω ) = 1 P(\Omega)=1 P(Ω)=1

条件概率公式及链式法则

条件概率公式:在 A A A给定的条件下, B B B发生的概率为:

P ( B ∣ A ) = P ( A ∩ B ) P ( A ) = P ( A , B ) P ( A ) P(B|A)=\frac{P(A\cap B)}{P(A)}=\frac{P(A,B)}{P(A)} P(BA)=P(A)P(AB)=P(A)P(A,B)

链式法则:

有上面的条件概率公式变形得到,两个事件 A A A B B B同时发生的概率为:

P ( A ∩ B ) = P ( A , B ) = P ( A ∣ B ) × P ( B ) P(A\cap B)=P(A,B)=P(A|B)\times P(B) P(AB)=P(A,B)=P(AB)×P(B)

若有三个事件 A A A B B B C C C,它们同时发生的概率为:

P ( A ∩ B ∩ C ) = P ( A , B , C ) = P ( A ∣ B , C ) × P ( B , C ) = P ( A ∣ B , C ) × P ( B ∣ C ) × P ( C ) P(A\cap B\cap C)=P(A,B,C)=P(A|B,C)\times P(B,C)=P(A|B,C)\times P(B|C)\times P(C) P(ABC)=P(A,B,C)=P(AB,C)×P(B,C)=P(AB,C)×P(BC)×P(C)

推广到 n n n个事件:
P ( α 1 , α 2 , … , α n ) = P ( α 1 ) P ( α 2 ∣ α 1 ) … P ( α k ∣ α 1 ∩ ⋯ ∩ α n − 1 ) = P ( α 1 ∣ α 2 , α 3 , … , α n ) P ( α 2 ∣ α 3 , α 4 , … , α n ) … P ( α n − 1 ∣ α n ) P ( α n ) P(\alpha_1,\alpha_2,\dots ,\alpha_n)=P(\alpha_1)P(\alpha_2|\alpha_1)\dots P(\alpha_k|\alpha_1\cap \dots\cap\alpha_{n-1})=P(\alpha_1|\alpha_2,\alpha_3,\dots,\alpha_n)P(\alpha_2|\alpha_3,\alpha_4,\dots,\alpha_n)\dots P(\alpha_{n-1}|\alpha_n)P(\alpha_n) P(α1,α2,,αn)=P(α1)P(α2α1)P(αkα1αn1)=P(α1α2,α3,,αn)P(α2α3,α4,,αn)P(αn1αn)P(αn)

即可以把几个事件组合的概率表示为关于第一个、最后一个或者任意制定一个事件的概率。

贝叶斯规则:

P ( A ∣ B ) = P ( B ∣ A ) P ( A ) P ( B ) P(A|B)=\frac{P(B|A)P(A)}{P(B)} P(AB)=P(B)P(BA)P(A)

贝叶斯规则使得能用逆的条件概率 P ( A ∣ B ) P(A|B) P(AB)求出 P ( B ∣ A ) P(B|A) P(BA)

例3:如果学生聪明(smart)的概率为0.3,学生成绩优秀(gradeA)的概率为0.2,学生聪明的条件下成绩优秀的概率为 P ( g r a d e A ∣ s m a r t ) = 0.6 P(gradeA|smart)=0.6 P(gradeAsmart)=0.6,求学生成绩优秀的条件下聪明的概率。

解:
由贝叶斯公式得:

P ( s m a r t ) = 0.3 P(smart)=0.3 P(smart)=0.3

P ( g r a d e A ) = 0.2 P(gradeA)=0.2 P(gradeA)=0.2

P ( s m a r t ∣ g r a d e A ) = P ( g r a d e A ∣ s m a r t ) P ( s m a r t ) P ( g r a d e A ) = 0.6 × 0.3 0.2 = 0.9 P(smart|gradeA)=\frac{P(gradeA|smart)P(smart)}{P(gradeA)}=\frac{0.6\times 0.3}{0.2}=0.9 P(smartgradeA)=P(gradeA)P(gradeAsmart)P(smart)=0.20.6×0.3=0.9

其中 P ( s m a r t ) = 0.3 P(smart)=0.3 P(smart)=0.3 P ( g r a d e A ) = 0.2 P(gradeA)=0.2 P(gradeA)=0.2为先验概率, P ( s m a r t ∣ g r a d e A ) P(smart|gradeA) P(smartgradeA) P ( g r a d e A ∣ s m a r t ) P(gradeA|smart) P(gradeAsmart)为后验概率。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值