CIKM 2017 Tutorial: Construction and Querying of Large-scale Knowledge Bases

In today's computerized and information-based society, people are inundated with vast amounts of text data, ranging from news articles, social media post, scientific publications, to a wide range of textual information from various domains (corporate reports, advertisements, legal acts, medical reports). How to turn such massive unstructured text data into structured, actionable knowledge, and how to enable effective and user-friendly access to such knowledge is a grand challenge to the research community.

In the first half of the tutorial, we introduce data-driven methods on mining structured facts (i.e., entities and their relations for types of interest) from massive text corpora to construct knowledge bases, with a focus on methods that are minimally-supervised, domain-independent, and language-independent for timely knowledge base construction across various application domains (news, social media, biomedical, business). In the second half of the tutorial, we discuss the challenges of querying large-scale knowledge bases, and give a systematic discussion on several emerging schema-agnostic querying paradigms for knowledge bases, including keyword query, graph query, natural language query (i.e., question answering), and query by example, which allows users to easily query knowledge bases without writing complex structured queries like SPARQL.

Xiang Ren1Yu Su2Xifeng Yan2 

University of Southern California1, University of California, Santa Barbara2


  1. Overview of Knowledge Base Construction and Querying [slides]
  2. Effort-light Knowledge Base Construction [slides]
  • Phrase Mining from Massive Text Corpora
  • Entity Recognition and Typing
  • Fine-grained Entity Typing
  • Co-extraction of Entities and Relationships
Schema-agnostic Knowledge Base Querying [slides]
  • Keyword Query: Query like Search Engine
  • Graph Query: Add a Little Structure
  • Natural Language Query: As Natural as You Want
  • Query by Example: Just Show Me Examples
Trends and research problems [slides][Full Slides


Multi-tasking sequence labeling [project]Learning with Heterogeneous Supervision [project]Learning with Indirection Supervision [project]

Code & Data

Sequence Tagging: [LM-LSTM-CRF]Phrase Mining: [AutoPhrase]Entity Typing: [PLE] [AFET]Relation Extraction: [ReHession] [ReQuest]Co-extraction of Entities and Relations: [CoType]Knowledge-based Question Answering: [GraphQuestions]



  • 广告
  • 抄袭
  • 版权
  • 政治
  • 色情
  • 无意义
  • 其他