神经网络
文章平均质量分 91
on2way
这个作者很懒,什么都没留下…
展开
-
Matlab之BP神经网络反向传播算法
(1)BP算法 Matlab中集成有BP算法工具箱,而且性能稳定,比较实用。这里不采用matlab自带工具箱,而是通过编写反向传播算法直接来实现,旨在能更好的从理论上来理解BP神经网络算法以及一些参数对算法的影响,再就是理解到反向传播的整个过程。其中部分程序参考论坛牛人们的编程方式来实现的。 (2)问题描述 BP算法一般都是用来对数据进行分类和建立预测模型的,这里,我是来进原创 2014-10-24 17:19:59 · 16634 阅读 · 5 评论 -
matlab编写线性单元的梯度下降算法(delta法则)
(一)说说要解决的问题 这里只是运用BP感知器的一些知识,用delta法则方式解决一个简单的线性或者非线性可分问题,比如这里围绕的就是坐标系下的8个点,这8个点很明显的划分两类,现在要求解出一组权值来划分这两类点。8组点是自己假设的,为[1,0,1;2,1.5,1;-1,-1.5,1;-3,-5,1;0,2,0;1.5,2,0;-1,0,0],在坐标系下的可以看到为:原创 2014-10-09 20:45:55 · 5705 阅读 · 1 评论 -
由神经网络联想到的人做梦时的一些遐想
近日在看人工智能上关于原创 2014-10-10 14:47:39 · 1685 阅读 · 3 评论 -
机器学习之从logistic到神经网络算法
在前两节曾经介绍过logistic回归与分类算法,并对线性与非线性数据集分别进行分类实验。Logistic采用的是一层向量权值求和的方式进行映射,所以本质上只能对线性分类问题效果较好(实验也可以看到),其模型如下所示(详细的介绍可看上两次博客:机器学习之logistic分类线性与非线性实验(续)):既然如此,我们可不可以在Y出来之前在多进行几次映射呢?答案是可以的,这就引出了多层网络,每层网络的输出原创 2015-08-10 17:19:52 · 7971 阅读 · 1 评论 -
机器学习之实战matlab神经网络工具箱
上节在 《机器学习之从logistic到神经网络算法》 中,我们已经从原理上介绍了神经网络算法的来源与构造,并编程实战了简单神经网络对于线性与非线性数据的分类测试实验。看过上节的可能会发现,上节实现的算法对于非线性数据的分类效果并不是非常完美,有许多值得优化的地方。而matlab作为一个科学计算软件,本身集成了非常多的优化算法,其中的神经网络工具箱就是其中一个优秀的工具箱,本节将以工具箱中的函数原创 2015-08-11 21:56:27 · 54165 阅读 · 6 评论