opencv
文章平均质量分 84
on2way
这个作者很懒,什么都没留下…
展开
-
python下PCA算法与人脸识别
关于这部分主要是想在python下试验一下主成分分析(PCA)算法以及简单的人脸识别。曾经详述过matlab下的PCA以及SVM算法进行人脸识别技术,参考如下:主成分分析法-简单人脸识别(一)主成分分析-简单人脸识别(二)PCA实验人脸库-人脸识别(四)PCA+支持向量机-人脸识别(五)主成分分析(PCA)算法主要是对高维数据进行降维,最大限度的找到数据间的相互关系,在机器学习、数据挖掘上很有用。在原创 2015-07-25 19:16:16 · 18543 阅读 · 3 评论 -
Python下opencv使用笔记(十二)(k均值算法之图像分割)
k均值(kmeans)聚类是一种最为简单的聚类方法,直接根据数据点之间的距离(欧氏距离,几何距离等等)来划分数据是属于哪一类的,当所有数据点所属的类别不在变化的时候,聚类也就完成了。详细原理可索引下面一个博客:聚类分析笔记-K均值matlab算法(一)关于kmeans再谈几点认识:重要的一点:聚类数目的问题。有的聚类、分类问题已经限制好了要聚类成几类,也就是聚类数目一定,那么这种聚类通常简单些,直原创 2015-07-24 11:46:17 · 29885 阅读 · 10 评论 -
vs2010+opencv3.0.0 环境配置 (以及配置技巧)
(1)目前最新的opencv库为opencv 3.0.0 库,其下载地址为:http://opencv.org/downloads.html Vs最新的可能达到了vs2015,考虑软件太大,且opencv中并没有对应vs2015版本的opencv,所以选择老一点版本的vs2010(2)下载完的opencv为exe文件,解压一下会出现两个文件夹如下: (3)下面是配置电脑的属性,打开:计算机 >原创 2015-09-07 21:09:45 · 28430 阅读 · 9 评论 -
三大计算机视觉和机器学习库的算法汇总
主要包括有OpenCV、Weka和Matlab,另外其中包含LibSVM、Vlfeat和DeepLearnToolbox等。1.OpenCV主页:http://opencv.org/ 下载地址:http://opencv.org/downloads.html 编程环境:VS 版本:3.0.0 教程:doc\opencv_tutorials.pdf API接口:doc\opencv2refm转载 2015-09-15 11:26:18 · 6440 阅读 · 0 评论 -
目标检测光流法(一):对光流法的认识
所谓光流,是计算机视觉研究领域的术语,直观的认识就是提供一个对运动物体的的描述,因此也常用于运动物体的检测与识别。现实生活中,我们之所以能感受到物体的动与不动,就是因为这个物体在前后两个时间点上出现在了不同的位置,我们人脑自动根据这个偏差就可以知道物体是运动了还是没有运动,是变远了还是变近了等等。那么基于这种思想下的运动目标检测,就诞生了光流。所以可以看出,光流不但可以检测出物体是否存在运动,运动的原创 2015-10-07 21:14:15 · 10536 阅读 · 0 评论 -
目标检测光流法(二):opencv下的光流L-K算法
后续将简单介绍光流法的一些简单实现包,包括opencv下的光流算法与matlab下的光流算法。该节主要介绍opencv下的光流实现。Opencv的光流实现由好几个方法可以(也就是说有好几个函数可以用),每个函数当然也对应着不同的原理,那么它的效果以及算法的速度等等就会有一些差别。主要包括以下几种: calcOpticalFlowPyrLK calcOpticalFlowFarneback ca原创 2015-10-07 21:24:12 · 24598 阅读 · 5 评论 -
目标检测光流法(三):opencv下光流Farneback法
上节说到过的calcOpticalFlowPyrLK光流算法,可以看到它实际上是一种稀疏特征点的光流算法,也就是说我们先找到那些(特征)点需要进行处理,然后再处理,该节介绍下一个全局性的密集光流算法,也就是对每一个点都进行光流计算,函数为calcOpticalFlowFarneback。首先介绍参数,详细的介绍 参见opencv手册参数一大推,得看一会。有些参数可能带来的影响不是很大,那么使用它原创 2015-10-08 10:41:19 · 13065 阅读 · 0 评论