人脸识别
文章平均质量分 88
on2way
这个作者很懒,什么都没留下…
展开
-
PCA实验人脸库-人脸识别(四)
一):人脸数据库AR人脸库(包含50位男性和50位女性每人26张人脸共2600张人脸图片 ):http://www.datatang.com/data/46195ORL人脸库(包含40个人的每人10张人脸的共400张人脸):http://www.cl.cam.ac.uk/Research/DTG/attarchive:pub/data/att_faces.tar.Z或者原创 2015-01-04 13:32:38 · 24922 阅读 · 23 评论 -
主成分分析-特征向量计算改进(1.1)
一)对PCA协方差的改进 这两天运行着人脸识别的相关程序发现,当数据量一大的时候,比如一个样本集合,随便的就有12*6750等等,在求这个矩阵的协方差与特征向量的时候,按照上一篇的介绍:主成分分析-简单人脸识别(二)使用到里面的Cell_all = PCA(img,k) 函数,会发现一般运行时间都会很久,其实正常在求取大矩阵的协方差特征值与特征向量的时候确实会很麻原创 2014-12-29 20:23:38 · 5896 阅读 · 0 评论 -
局部二值模式LBP-简单人脸识别(三)
一)局部二值模式简介前面介绍过关于主成分分析法的识别方法,这个方法是选取的整幅图像的主成分分量来作为新的特征,从某种意义上说这是一种基于全局特征的方法。但是一般图像识别中,仅仅使用全局特征是不够的,获得的识别率较低,更多的时候,表征一副图像的特征也缺少不了局部特征。那么局部二值模式(LBP)就是这样一种表征局部特征的方法。介绍性原理的文章很多,这里贴个较好的:人脸识别经原创 2014-12-28 22:02:49 · 8940 阅读 · 0 评论 -
主成分分析-简单人脸识别(二)
一):人脸预准备(文章说明:正常的人脸识别时,需要的是足够多的样本来进行训练,以期达到准确率高的目的。这里,只是尝试运用PCA算法基本上实现人脸的识别。)那么我所使用到的人脸模板就是简单的12张处理过的人脸图像(很多是直接从网上下载的,有涉及到肖像权的请通知哈~_~!)。正常情况下,为了使算法更好,怎么也得好多个不同的人脸图片吧,对每张脸来说,怎么也得好几副不同的图像才可以达到很好的效原创 2014-12-27 10:36:43 · 10222 阅读 · 1 评论 -
主成分分析法-简单人脸识别(一)
一)主成分分析法 主成分分析法,即PCA算法,直观上来讲就是一种降维方法,例如某件事可能受到好多个因素的影响,假如有ABCDEFG这7个因素,但是呢其中有ABC三个因素对事件的影响基本上是相同的,那么就可以把ABC三个因素用其中的一个因素代替,或者把ABC组合一下用一个全新的因素H来代替,这样因素就降为了4个,实现了降维的过程。主成分分析最大的好处就是降维,使得数据的处理更容易,速度原创 2014-12-26 19:20:09 · 13817 阅读 · 0 评论 -
matlab之简单粒子群的函数寻优
沉寂了好久,再来CSDN,寻找那一片蔚蓝的天空;编辑环境变了呀,试一下Markdown编辑器一:关于粒子群算法粒子群算法是一种智能优化算法。关于智能,个人理解,不过是在枚举法的基础上加上了一定的寻优机制。试想一下枚举法,假设问题的解空间很小,比如一个函数 y = x^2 ,解空间在[-1,1],现在求这个函数的最小值,我们完全可以使用枚举法,比如在这里,在解空间[-1,1]上,取1000等分,也就原创 2015-03-28 10:35:45 · 12269 阅读 · 3 评论 -
PCA+支持向量机-人脸识别(五)
一):实验准备 本篇可以接上篇:PCA实验人脸库-人脸识别(四)对于上篇中数据库ORL人脸库和AR人脸库(下载地址在上篇中有),在上篇中讨论的单纯的PCA算法对两个数据库进行了准确率计算,本篇为了提高识别准确率,特采用一种新方法,并结合PCA一起实现识别,实验结果发现该方法能明显提高两者数据库的识别率。二):关于支持向量机一直以来感觉支持向量机是一个神奇的算法,当然里面的原创 2015-01-08 16:40:01 · 9465 阅读 · 7 评论 -
python下PCA算法与人脸识别
关于这部分主要是想在python下试验一下主成分分析(PCA)算法以及简单的人脸识别。曾经详述过matlab下的PCA以及SVM算法进行人脸识别技术,参考如下:主成分分析法-简单人脸识别(一)主成分分析-简单人脸识别(二)PCA实验人脸库-人脸识别(四)PCA+支持向量机-人脸识别(五)主成分分析(PCA)算法主要是对高维数据进行降维,最大限度的找到数据间的相互关系,在机器学习、数据挖掘上很有用。在原创 2015-07-25 19:16:16 · 18545 阅读 · 3 评论