高斯朴素贝叶斯、K近邻算法实现 | Python

这篇博客介绍了如何使用Python实现高斯朴素贝叶斯和K近邻算法,依赖numpy和pandas库。文中详细讲解了算法,并通过与SKlearn库的比较验证了实现的正确性,展示了在jupyter notebook上的测试结果,证明预测结果与SKlearn一致。
摘要由CSDN通过智能技术生成

这些算法实现依赖于numpy/pandas库,而且度量结果与SKlearn一致

贝叶斯算法实现

算法介绍: 华校专的笔记

这里只实现了 “假设所有特征都是数值型”。

class GaussianNaiveBayes():
    
    def __init__(self):
        # 有多少类别
        self.classes = None
        # 每个类别的概率
        self.tags_ = {}
        # 每个类别每列的均值
        self.theta_ = {}
        # 每个类别每列的标准差
        self.sigma_ = {}
        
    def fit(self,X,y):
        self.X = np.array(X)
        self.y = np.array(y)
        self.classes = list(np.unique(self.y))
        for c in self.classes:
            X_c = self.X[np.where(self.y == c )]
            X_mean_c = np.mean(X_c,axis=0)
            X_std_c = np.std(X_c,axis&
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值