神经网络(Neural Network)

本文介绍了神经网络的基础概念,包括神经元的结构及其工作原理,重点讲解了线性模型和非线性模型(激励函数)。此外,还探讨了单层及多层神经网络的结构与训练方法,并解释了损失函数在优化过程中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

上篇文章讲了《世界观 - 经验事实和哲学性/概念性事实》,很多科学真理和事实是基于复杂的论证过程,进而形成人们的世界观,推演,证明经过很多复杂的往复和推理过程,起初是经由发现,获取更多线索,不断证明,并不断被挑战(可证伪性),最终形成当下的世界观,人脑的思维过程能否被机器替代,今天主要简述下神经网络(Neural Network)。

 

01

神经网络(Neural Network)

人的神经网络如上图所示,有点像树,有很多树突和轴突,不同的细胞通过树突和轴突传递信息,他们的基础点叫突触,一个细胞的轴突通过突触将信号传递给另一个细胞的树突。

我们能否设计这样的神经细胞结构,让彼此之间的通过某种方式相互刺激、协同完成信息处理呢?

最早在1957年Rosenblatt提出了Perceptron(感知器模型)就讲研究领域带入到了神经网络。

 

02

神经元

 

神经元是神经细胞的基本组成单元,也是将要介绍的神经网络的主要组成部分。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值