[IOJT论文阅读]Multi-Task Computation Offloading Based On Evolutionary Multi-Objective Optimization

本文探讨了工业物联网中如何通过进化多目标优化解决设备间计算卸载的挑战。提出了一种新的任务模型,包括科学工作流和并发工作流任务,并构建了两层优化框架,优化带宽分配和任务调度,以降低延迟和能耗。实验证明了该方法的有效性和效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Chai, Z.-Y., Zhao, Y.-J., & Li, Y.-L. (n.d.). Multi-Task Computation Offloading Based On Evolutionary Multi-Objective Optimization in Industrial Internet of Things. IEEE Internet of Things Journal, PP(99), 1–1. https://doi.org/10.1109/JIOT.2024.3349609
论文中文名字:基于进化多目标优化的工业物联网中的多任务计算卸载

摘要
工业物联网(IIoT)的发展彻底改变了传统制造业。具有有限资源的工业设备通常无法满足大量计算密集和对延迟敏感的各种需求。移动边缘计算(MEC)将这些任务卸载到附近的边缘服务器,以实现更低的延迟和能耗。然而,考虑到网络的信道干扰和不同任务的多样化需求,协调多个设备之间的计算卸载是具有挑战性的。为了解决这一挑战,将计算卸载形式化为一个多目标优化问题,并提出了一个新的任务模型,由科学工作流任务和并发工作流任务组成,以表示工业环境中的多任务。此外,设计了一个两层次优化框架,通过动态带宽预分配和基于分解的改进多目标演化算法,优化带宽分配和多任务计算卸载。全面的实验证明了我们提出的框架在延迟和能耗之间的权衡以及所获得的非支配解的收敛性和多样性方面的有效性和效率。

在这里插入图片描述
图1 工业环境模型

在这里插入图片描述
图2. 多任务模型示例。

在这里插入图片描述
图3. 对实际应用建模工作流的示例。
在这里插入图片描述
图4. 多任务调度计划示例。
在这里插入图片描述
图5. 解表示。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王知为

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值