Chai, Z.-Y., Zhao, Y.-J., & Li, Y.-L. (n.d.). Multi-Task Computation Offloading Based On Evolutionary Multi-Objective Optimization in Industrial Internet of Things. IEEE Internet of Things Journal, PP(99), 1–1. https://doi.org/10.1109/JIOT.2024.3349609
论文中文名字:基于进化多目标优化的工业物联网中的多任务计算卸载
摘要
工业物联网(IIoT)的发展彻底改变了传统制造业。具有有限资源的工业设备通常无法满足大量计算密集和对延迟敏感的各种需求。移动边缘计算(MEC)将这些任务卸载到附近的边缘服务器,以实现更低的延迟和能耗。然而,考虑到网络的信道干扰和不同任务的多样化需求,协调多个设备之间的计算卸载是具有挑战性的。为了解决这一挑战,将计算卸载形式化为一个多目标优化问题,并提出了一个新的任务模型,由科学工作流任务和并发工作流任务组成,以表示工业环境中的多任务。此外,设计了一个两层次优化框架,通过动态带宽预分配和基于分解的改进多目标演化算法,优化带宽分配和多任务计算卸载。全面的实验证明了我们提出的框架在延迟和能耗之间的权衡以及所获得的非支配解的收敛性和多样性方面的有效性和效率。
图1 工业环境模型
图2. 多任务模型示例。
图3. 对实际应用建模工作流的示例。
图4. 多任务调度计划示例。
图5. 解表示。