边缘计算论文阅读Dynamic Semantic Compression for CNN Inference in Multi-access Edge Computing:

Li, N., Iosifidis, A., & Zhang, Q. (2024). Dynamic Semantic Compression for CNN Inference in Multi-access Edge Computing: A Graph Reinforcement Learning-based Autoencoder. In arXiv [eess.IV]. arXiv. http://arxiv.org/abs/2401.12167

“在多接入边缘计算中的CNN推断的动态语义压缩:基于图强化学习的自编码器”

Dynamic Semantic Compression for CNN Inference in Multi-access Edge Computing: A Graph Reinforcement Learning-based Autoencoder

这篇论文研究了在动态多接入边缘计算(MEC)网络中的CNN推断的计算卸载。为了解决通信时间和计算资源可用性的不确定性,我们提出了一种新颖的语义压缩方法,即基于自编码器的CNN架构(AECNN),用于在部分卸载中进行有效的语义提取和压缩。在语义编码器中,我们引入了基于CNN中通道注意机制的特征压缩模块,通过选择最具信息性的特征来压缩中间数据。在语义解码器中,我们设计了一个轻量级解码器,通过从接收到的压缩数据中学习以改善准确性来重建中间数据。为了有效权衡通信、计算和推断准确性,我们设计了一个奖励函数,并将CNN推断的卸载问题制定为一个最大化问题,目标是在长期内最大化平均推断准确性和吞吐量。为了解决这个最大化问题,我们提出了一种基于图强化学习的AECNN(GRL-AECNN)方法,在不同的动态场景下优于现有的方法DROO-AECNN、GRL-BottleNet++和GRL-DeepJSCC。这突显了GRL-AECNN在动态MEC中卸载决策制定方面的优势。
在这里插入图片描述
图1:ResNet-50中的第1个卷积层(CL)的输出特征图。蓝色的特征图几乎对推断无用,而红色的特征图包含足够的信息,可用于生成其他特征。

在这里插入图片描述
图2:在MEC网络中的任务卸载示例。

在这里插入图片描述
图3:在设备-边缘协同推断系统中提出的AECNN架构。 (a) 描述了AECNN的整体框架;(b) 展示了FC模块的设计;© 利用具有组卷积层的CNN展示了设计的FR模块。

在这里插入图片描述
图4:基于图强化学习的AECNN的框架

  • 10
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
智能计算系统(CNN)是一种机器学习技术,用于图像识别和处理任务。CNN实验代码涉及到构建和训练一个CNN模型来完成特定的任务,如图像分类、物体检测等。以下是一个示例的CNN实验代码: 首先,我们需要导入必要的库,如TensorFlow和Keras。然后,我们可以定义一个CNN模型,包含多个卷积层、池化层和全连接层。这些层通过构建一个神经网络,用于学习输入图像的特征并进行分类。 接下来,我们需要加载和预处理数据集。可以使用一些开源数据集,如MNIST手写数字数据集。我们可以使用Keras提供的函数加载数据集,并将其拆分为训练集和测试集。 然后,我们可以对CNN模型进行编译和训练。我们可以选择适当的损失函数和优化器,如交叉熵损失和随机梯度下降优化器。然后,使用模型.fit()函数对训练集进行训练,并设置一些超参数,如批处理大小和迭代次数。 训练完成后,我们可以使用测试集来评估模型的性能。可以使用模型.evaluate()函数计算模型在测试集上的准确率或其他指标。 最后,我们可以使用模型对新的图像进行预测。通过调用模型.predict()函数,将新的图像输入到训练好的模型中,并得到对应的输出。 这只是一个简单的CNN实验代码示例,实际上,CNN的应用非常广泛,可以应用于许多领域,如医学图像处理、自动驾驶等。在实践中,我们还可以调整模型结构、超参数和优化策略,以获得更好的性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王知为

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值