用于精准葡萄栽培的生物质表征,结合语义分割模型和点云分析
科学界在人工智能和机器人技术方面的进展使得精准葡萄栽培得以追求可持续性并提高最终产量。例如,监测每棵植物的冠层体积可以确保葡萄串的正确成熟。在这个背景下,本文提出了一种新颖的方法,利用低成本的Azure Kinect RGB-D相机在葡萄园中获取的图像对生物质体积进行表征。采用三个编码器-解码器深度结构(U-Net、DeepLabV3+和MANet)来实现语义图像分割,以生成准确的葡萄叶结构掩码。在迁移学习的方法中,使用了通过Intel RealSense D435深度相机获取的公共数据集来训练分割网络。然后,提出了一个完整的流程来估算生物质体积的可能变化。实验分析了葡萄藤修剪过程中去除的生物质量。在不同相机拍摄的训练和测试集上,U-Net结构配备ResNet50骨干获得了最佳的分割结果,精度为92.10%。然而,DeepLabV3+网络搭载ResNeXt50骨干在测试集上获得了90.25%的精度,并且需要最短的训练时间,给出了对去除的生物质量的最佳估算。这些结果证明了这种自动方法在控制叶子生长和确保可持续葡萄栽培实践方面的潜在能力。
Fig. 1. 一台农业机械正在修剪意大利Conte Spagnoletti Zeuli葡萄园的葡萄藤,这是进行实地实验的地方。
Fig. 2. 使用Intel RealSense D435相机获取的彩色图像和相应的地面真值掩码:(a)7月,葡萄较小且呈绿色,叶子较少;(b)9月,葡萄呈红色,叶子较多;(c)10月,叶子较少,无葡萄。图例显示了三个感兴趣的类别。
Fig. 6. (a) 由Azure Kinect相机获取的输入图像和 (b) 相应的带有三个感兴趣类别的图像注释。颜色对应关系在图例中显示。