SSTrans-Net: Smart Swin Transformer Network for medical image segmentation

本文介绍了一种新的医学图像分割网络SSTrans-Net,它采用智能移动窗口多头自注意力模块(SSW-MSA),以处理多器官间的长程依赖。通过动态调整掩码,SSTrans-Net在保持全局特征的同时减少计算资源。实验证明,该方法在Synapse和ACDC数据集上表现出色,分割性能显著优于现有模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

SSTrans-Net:用于医学图像分割的智能 Swin Transformer 网络

医学图像分割通过一些最近基于Transformer的工作取得了令人印象深刻的结果。特别是Swin Transformer在一些分割任务中展示了该方法的优越性。然而,在Swin Transformer中,相同且固定的掩码阻止了所有通道中超长范围像素之间的所有交互。对于多器官分割,捕捉一些通道中的长程依赖关系是有益的。在本文中,我们提出了一个用于多器官分割的U形智能Swin Transformer网络(SSTrans-Net)。在SSTrans-Net中,智能移动窗口多头自注意(SSW-MSA)模块被用来替换基于Swin Transformer中的掩码的模块,用于学习不同通道的特征,重点关注器官之间的相关依赖关系。特别是,在专注于目标分布的通道中保持有效的长程依赖,并从专注于局部上下文的通道中删除该依赖。此外,我们引入Dice和Focal损失函数来监督智能Swin Transformer的优化,以提高其平衡全局和局部特征的能力。对Synapse和ACDC数据集的实验证明,我们的策略需要比大多数分割器更少的计算资源,并且能够显著提高模型的分割性能。我们的代码可在 https://github.com/suofer/Smart-Swin-Transformer 获取。

在这里插入图片描述

图1. 提出的Smart Swin Transformer中SSW-MSA的主要工作。绿色框的移动表示了移动窗口。红色框表示在给定通道中由Smart Mask限制后用于计算自注意分数的范围。每个通道的掩码都是不同的,这里只显示了其中一个(用于提取前景像素的相互作用的通道)。

在这里插入图片描述
图2. SSTrans-Net的架构。𝐶0是输入图像的通道数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王知为

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值