Distributed Gradient Tracking for Differentially Private Multi-Agent Optimization With a Dynamic Eve

Distributed Gradient Tracking for Differentially Private Multi-Agent Optimization With a Dynamic Event-Triggered Mechanism

分布式梯度跟踪用于具有动态事件触发机制的差分隐私多智能体优化

分布式优化通过分布式智能体之间的合作实现目标函数的最小化。考虑到通信能力有限和隐私问题,本文提出了一种用于分布式优化的动态事件触发的差分隐私梯度跟踪算法。通过事件触发来减少通信需求,同时通过对状态的扰动和平均梯度的跟踪来保证 ε-差分隐私。收敛点由注入到跟踪中的噪声唯一确定。理论上建立了步长的充分条件,以保证均值和几乎肯定的收敛。此外,严格获得了理论上的隐私级别,并讨论了事件触发通信对隐私的积极影响。通过对一个4节点星型电力系统的数据集分类的稳定性进行了模拟,以验证理论发现。

在这里插入图片描述
图1 通信拓扑

在这里插入图片描述
图2. 在不同算法下zx_i,3的演变。(a) DE-DPGT. (b) SE-DPGT. © DiaDSP.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王知为

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值