Distributed Gradient Tracking for Differentially Private Multi-Agent Optimization With a Dynamic Event-Triggered Mechanism
分布式梯度跟踪用于具有动态事件触发机制的差分隐私多智能体优化
分布式优化通过分布式智能体之间的合作实现目标函数的最小化。考虑到通信能力有限和隐私问题,本文提出了一种用于分布式优化的动态事件触发的差分隐私梯度跟踪算法。通过事件触发来减少通信需求,同时通过对状态的扰动和平均梯度的跟踪来保证 ε-差分隐私。收敛点由注入到跟踪中的噪声唯一确定。理论上建立了步长的充分条件,以保证均值和几乎肯定的收敛。此外,严格获得了理论上的隐私级别,并讨论了事件触发通信对隐私的积极影响。通过对一个4节点星型电力系统的数据集分类的稳定性进行了模拟,以验证理论发现。
图1 通信拓扑
图2. 在不同算法下zx_i,3的演变。(a) DE-DPGT. (b) SE-DPGT. © DiaDSP.