矩阵论——施密特正交化

矩阵论施密特正交化,通俗释义。

已知空间向量γ,α,β,求取,目标将α正交化至β方向上。

1、α在γ方向上的投影s为:

s=\parallel \alpha \parallel \cos \theta = \frac{ ( \alpha , \gamma )}{ \parallel \gamma \parallel}

2、α在γ方向上的分量为:

s乘以γ方向上的单位向量:

\frac{ \gamma }{ \parallel \gamma \parallel}

即式子为:

\frac{ ( \alpha , \gamma )}{ \parallel \gamma \parallel} \frac{\gamma}{ \parallel \gamma \parallel}=\frac{ ( \alpha , \gamma )}{( \gamma , \gamma )} \gamma

3、消除α在γ方向上的分量,进而得到了α在β方向上的分量:

\alpha-\frac{ ( \alpha , \gamma )}{( \gamma , \gamma )} \gamma

综上,完成了一次施密特正交化。

 

附加:

如果拓展成高维度,比如三维,即有三个基向量,即三个方向的维度,那么求取三维空间在某一维度的分量,需要该空间向量减去另外两维度的分量。往往正交化的过程是先将某一个向量设定为第一个维度的向量,后面的向量依次进行正交化,当然要消除前一维度的分量。

 

  • 2
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值