链接:http://poj.org/problem?id=3641
题意:由费马小定理可得,对于素数p,a^p = a (mod p),但是对于某些非素数p,也有比较小的可能满足a^p = a (mod p),如果满足,则称p是a条件下的伪素数,现给出p,a,问p是不是a条件的伪素数。
思路:首先用米勒 罗宾判断p是不是素数,如果不是,判断a^p = a (mod p)是否成立。
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <map>
#include <cstdlib>
#include <queue>
#include <stack>
#include <vector>
#include <ctype.h>
#include <algorithm>
#include <string>
#include <set>
#define PI acos(-1.0)
#define maxn 10005
#define INF 0x7fffffff
#define eps 1e-8
typedef long long LL;
typedef unsigned long long ULL;
using namespace std;
LL pow_mod(LL aa,LL ii,LL nn)
{
if(ii==0)
return 1%nn;
LL temp=pow_mod(aa,ii>>1,nn);
temp=temp*temp%nn;
if(ii&1)
temp=temp*aa%nn;
return temp;
}
bool test (LL n,LL a,LL d)
{
if(n==2)
return true;
if(n==a)
return true;
if((n&1)==0)
return false;
while(!(d&1))
d=d>>1;
LL t=pow_mod(a,d,n);
while((d!=n-1)&&(t!=1)&&(t!=n-1))
{
t=(LL)t*t%n;
d=d<<1;
}
return (t==n-1||(d&1)==1);
}
bool isPrime(LL n)
{
if(n<2)
return false;
LL a[]= {2,3,5,7,61};
for(int i=0; i<=4; i++)
if(!test(n,a[i],n-1))
return false;
return true;
}
int main()
{
int T;
LL p,a;
while(scanf("%lld%lld",&p,&a))
{
if(!p&&!a)
break;
if(isPrime(p))
printf("no\n");
else if(pow_mod(a,p,p)==a)
printf("yes\n");
else printf("no\n");
}
return 0;
}