//暑假学的快速幂,过了一个月快全部还给他了
typedef long long ll;
ll mod_pow(ll x,ll n, ll mod)
{
ll res=1;
while(n>0)
{
if(n&1)res=res*x%mod;//二进制最低位为1乘上x^(2^i)
x=x*x%mod; //x等于x的平方,二进制是快速幂的关键
n>>=1;
}
return res;
}</pre><pre code_snippet_id="1917732" snippet_file_name="blog_20161008_15_7196960" name="code" class="cpp">
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
int jdu(__int64 n)
{
__int64 i;
for(i=2; i*i<=n; i++)
{
if(n%i==0)
return 0;
}
return 1;
}
int kusu(__int64 n,__int64 a)
{
__int64 sum,p;
p=n;
sum=1;
while(n>0)
{
if(n&1)sum=sum*a%p;
a=a*a%p;//这里是难点 是一个公式(a*b)%c=((a%c)*b)%c
n>>=1;
}
return sum;
}
int main()
{
__int64 n,p;
while(~scanf("%I64d%I64d",&n,&p)&&n!=0&&p!=0)
{
if(jdu(n)==1)printf("no\n");
else
{
if(kusu(n,p)==p%n)printf("yes\n");
else printf("no\n");
}
}
return 0;
}