机器人静力学与刚度模型学习笔记

总算进行到刚度模型了。。。

❤ 2023.8.6 ❤

机器人静力学

学习资料

→→→【4-10机器人的静力分析】

机器人末端广义力

F = [ f m ] = [ f x f y f z m x m y m z ] F=\left[\begin{matrix}f\\m\\\end{matrix}\right]=\left[\begin{matrix}f_x\\f_y\\f_z\\m_x\\m_y\\m_z\\\end{matrix}\right] F=[fm]= fxfyfzmxmymz

机器人关节力矩矢量

τ = [ τ 1 τ 2 … τ n ] T \tau=\left[\begin{matrix}\tau_1&\tau_2&\ldots&\tau_n\\\end{matrix}\right]^\mathrm{T} τ=[τ1τ2τn]T

根据虚功与虚位移原理

τ T Δ q = τ 1 Δ q 1 + τ 1 Δ q 1 + … + τ n Δ q n = f T d + m T φ = F T D \tau^\mathrm{T}\Delta q=\tau_1\Delta q_1+\tau_1\Delta q_1+\ldots+\tau_n\Delta q_n=f^\mathrm{T}d+m^\mathrm{T}\varphi=F^\mathrm{T}D τTΔq=τ1Δq1+τ1Δq1++τnΔqn=fTd+mTφ=FTD


D = J ( q ) d q D=J\left(q\right)dq D=J(q)dq

于是不计关节摩擦和杆件重力,其关系为

τ = J T F \tau=J^\mathrm{T}F τ=JTF

这里 J T F J^\mathrm{T}F JTF为机器人力雅可比矩阵,是速度雅可比矩阵的转秩


机器人刚度模型

6轴机器人关节刚度

K θ = d i a g ( [ K 1 , K 2 , K 3 , K 4 , K 5 , K 6 ] ) K_\theta=diag\left(\left[K_1,K_2,K_3,K_4,K_5,K_6\right]\right) Kθ=diag([K1,K2,K3,K4,K5,K6])

在末端力作用下,关节变形为

d q = K θ − 1 ⋅ τ = K θ − 1 ⋅ J T ⋅ F dq=K_\theta^{-1}\cdot\tau=K_\theta^{-1}\cdot J^\mathrm{T}\cdot F dq=Kθ1τ=Kθ1JTF

于是机器人末端偏移量

Δ X = J ⋅ d q = J K θ − 1 J T F \Delta X=J\cdot d_q=JK_\theta^{-1}J^\mathrm{T}F ΔX=Jdq=JKθ1JTF

Δ X = [ Δ d Δ φ ] \Delta X=\left[\begin{matrix}\Delta d\\\Delta\varphi\\\end{matrix}\right] ΔX=[ΔdΔφ]

Δ d \Delta d Δd——机器人末端位置偏移
Δ φ \Delta\varphi Δφ——机器人末端姿态偏移

### 六轴机器人关节刚度辨识的研究 六轴机器人的关节刚度对于其动态特性和控制性能具有重要影响。为了提高操作精度和稳定性,许多研究致力于开发有效的关节刚度辨识方法。 #### 基于模型的方法 一种常见的方法是通过建立精确的动力学模型来进行参数识别。Huang等人提出了基于可控性程度的空间自由漂浮机器人路径规划算法[^1]。虽然该研究主要关注空间机器人,但其中涉及的建模技术可以为地面固定型六轴工业机器人的动力学分析提供借鉴。具体来说,可以通过测量系统的输入输出数据并利用系统辨识工具箱中的函数(如`nlgreyest`)来估计未知参数。 ```matlab % 创建非线性灰色框模型结构体 FileName = 'robot_dynamics'; % 定义描述文件名 Order = [3 0 2]; % 设置状态数、延迟时间和噪声维度 Parameters = struct(... % 初始化参数向量及其最小最大边界值 'c', {ones(9,1)}, ... 'Minimum', {-Inf*ones(9,1)},... 'Maximum', {Inf*ones(9,1)}); nlgr = idnlgrey(FileName, Order, Parameters); ``` 上述代码片段展示了如何创建一个用于表示复杂机械手运动方程式的非线性灰盒模型实例化过程的一部分。此模型可用于后续的参数优化过程中以获取更贴近实际物理行为的结果。 #### 数据驱动的方法 另一种途径是从实验获得的数据出发直接学习映射关系而无需显式构建完整的数学表达形式。这种方法通常依赖于先进的统计学习理论和技术手段实现自动化特征提取模式匹配功能。例如,在给定一组已知条件下的位移响应曲线之后,能够训练神经网络或其他类型的回归器去预测不同负载情况下各关节处所承受的具体力矩大小变化趋势从而反推出相应的弹性系数数值范围。 #### 组合策略的应用案例 在某些应用场景下,还可以考虑将两者结合起来形成混合框架以便更好地适应特定任务需求。比如先采用解析法求解部分易于处理的关键部位特性再结合实测样本集进一步微调其余次要因素直至整体误差达到可接受水平为止。这种做法不仅有助于简化计算流程而且还能有效提升最终解决方案的质量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值