机器人静力学与刚度模型学习笔记

总算进行到刚度模型了。。。

❤ 2023.8.6 ❤

机器人静力学

学习资料

→→→【4-10机器人的静力分析】

机器人末端广义力

F = [ f m ] = [ f x f y f z m x m y m z ] F=\left[\begin{matrix}f\\m\\\end{matrix}\right]=\left[\begin{matrix}f_x\\f_y\\f_z\\m_x\\m_y\\m_z\\\end{matrix}\right] F=[fm]= fxfyfzmxmymz

机器人关节力矩矢量

τ = [ τ 1 τ 2 … τ n ] T \tau=\left[\begin{matrix}\tau_1&\tau_2&\ldots&\tau_n\\\end{matrix}\right]^\mathrm{T} τ=[τ1τ2τn]T

根据虚功与虚位移原理

τ T Δ q = τ 1 Δ q 1 + τ 1 Δ q 1 + … + τ n Δ q n = f T d + m T φ = F T D \tau^\mathrm{T}\Delta q=\tau_1\Delta q_1+\tau_1\Delta q_1+\ldots+\tau_n\Delta q_n=f^\mathrm{T}d+m^\mathrm{T}\varphi=F^\mathrm{T}D τTΔq=τ1Δq1+τ1Δq1++τnΔqn=fTd+mTφ=FTD


D = J ( q ) d q D=J\left(q\right)dq D=J(q)dq

于是不计关节摩擦和杆件重力,其关系为

τ = J T F \tau=J^\mathrm{T}F τ=JTF

这里 J T F J^\mathrm{T}F JTF为机器人力雅可比矩阵,是速度雅可比矩阵的转秩


机器人刚度模型

6轴机器人关节刚度

K θ = d i a g ( [ K 1 , K 2 , K 3 , K 4 , K 5 , K 6 ] ) K_\theta=diag\left(\left[K_1,K_2,K_3,K_4,K_5,K_6\right]\right) Kθ=diag([K1,K2,K3,K4,K5,K6])

在末端力作用下,关节变形为

d q = K θ − 1 ⋅ τ = K θ − 1 ⋅ J T ⋅ F dq=K_\theta^{-1}\cdot\tau=K_\theta^{-1}\cdot J^\mathrm{T}\cdot F dq=Kθ1τ=Kθ1JTF

于是机器人末端偏移量

Δ X = J ⋅ d q = J K θ − 1 J T F \Delta X=J\cdot d_q=JK_\theta^{-1}J^\mathrm{T}F ΔX=Jdq=JKθ1JTF

Δ X = [ Δ d Δ φ ] \Delta X=\left[\begin{matrix}\Delta d\\\Delta\varphi\\\end{matrix}\right] ΔX=[ΔdΔφ]

Δ d \Delta d Δd——机器人末端位置偏移
Δ φ \Delta\varphi Δφ——机器人末端姿态偏移

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值