36、预期学习分类器系统中的广义状态值

预期学习分类器系统中的广义状态值

在机器学习领域,预期学习分类器系统(ACS2)在解决一些问题时展现出了一定的能力,但也存在着一些局限性。本文将深入探讨ACS2中存在的问题,以及如何通过引入广义状态值来改进其性能。

1. 奖励预测与动作选择

奖励预测值 r 会受到一个因素的影响,该因素或多或少地使奖励值偏向未来的强化值。为避免奖励的自我传播或对环境无实际改变的奖励传播,对奖励预测传播的分类器施加了约束,即其效果部分不能完全通用(cl.E ≠ {#}L)。这样,奖励预测值 r 能估计在所有分类器适用的可能情况 σ 中执行动作 A 后,遵循最优策略所获得的平均折扣奖励。

动作选择可以在一定程度上基于奖励预测值 r 进行偏向。通常,ACS2采用简单的 ϵ - 贪心动作选择策略,即以概率 ϵ 随机选择动作,否则选择最佳动作。在匹配集 [M] 中,具有最高 qr 值的分类器的动作通常被视为最佳动作。此外,为了加速模型学习,还引入了额外的动作选择偏向,以概率 pb 选择能带来最高知识增长的动作(以最高平均应用延迟或最低平均质量表示)。

2. 模型别名问题

尽管分类器的奖励预测值所代表的行为策略在解决不同迷宫问题上表现出一定效果,但也会出现所谓的“模型别名”问题。该问题指的是,演化预测模型中的分类器可能过于通用,无法准确指定强化值。也就是说,即使分类器在其条件满足的所有情况下能准确指定感知效果,但其奖励预测值可能不准确。

2.1 简单示例

以四子棋游戏为例,ACS2学习游戏的走法。动作是将硬币放入七个插槽中的任意一个。一段时间后,ACS2可以学习到所有可能动作的效果表示。然而,为了准确预测动作效果,分类器的

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值