双目视觉中本质矩阵和基础矩阵的详细推导

原文链接如下:https://www.cnblogs.com/houkai/p/6661607.html

对极几何是视图几何理论的基础,对极几何(Epipolar Geometry)描述了同一场景两幅图像之间的视觉几何关系。

设两相机的中心分别为Ol和Or,两图像平面分别为Iclip_image004P为共同视域中的场景空间点,它在两幅图像平面上的像点分别为pl和pr。对极几何关系中主要包含以下几何元素:

image

极平面:两个相机坐标原点Ol、Or和物体P组成的平面。

极线:极平面和两个像平面的交线,即p_{l}e_{l}p_{r}e_{r}

极点:e_{l}为右相机原点在左像平面的投影;e_{r}为左相机原点在右像平面的投影

我们要研究的极线约束:两极线上点的对应光系(p_{l}p_{r}当然也满足)

如果有两个相机,cam1在建筑物的左侧,cam2在建筑物的右侧,拍摄得到两张照片.像平面是无限延伸的,照片只是像平面的一部分.

image

左侧是cam1的像平面,右侧是cam2的像平面。

image

红线表示相应的对极线,这些对极线满足一定的几何约束。

本质矩阵

两个相机坐标系的关系:

image

P_{l}是物体P在O_{1}相机坐标系的位置,P_{r}是物体P在O_{r}坐标系的位置。O_{r}相对于O_{1}的旋转矩阵为R,位移为T。则:

image

由于R是正交矩阵,可以写成:image

由于三向量共面,如下图,所以它们的混合积为0.

image

image

将叉乘写成矩阵相乘的形式:

image

令:image,S是一个秩为2的矩阵,则:

image

显然,P_rP_l可以通过矩阵E=RS来约束,我们称E为本质约束(Essential Matrix)。它具有两个性质:

  1. 秩为2
  2. 只依赖于外部参数R和T

基础矩阵

继续前面的本质矩阵,结合成像的集合关系:

201112201556491880.png (567×395)

这里的p_rp_l是在单位距离坐标系下的位置.如果我们要分析的是图像,需要转到像素坐标系下,此时:

201112201556561211.png (603×189)

从而有:

201112201556566817.png (607×381)

我们称矩阵F为基础矩阵:image,性质是:

  1. 秩为2
  2. 依赖于相机内参和外部参数R和T

基础矩阵给出了:在已知一个点和F的情况下,其匹配点的直线约束方程:

image

直线约束方程为:image

进一步分析:image而这里的F是秩为2的矩阵,所以存在:imageimage

e表示它满足所有的直线约束,也就是上面图中那一堆直线的交点,物理意义便是cam2(cam1)在cam1(cam2)的像平面的投影,即极点。

使用SVD分解即可求得极点。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值