打架识别(AI+Python+PyQt5)(一)

本文介绍了作者进行打架识别项目的经验,主要方法包括基于Detection、骨骼点和视频理解的打架检测。作者选择了基于目标检测的Yolo算法,详细阐述了从数据标注(使用Labelme工具)、数据转换到模型训练的全过程,展示了使用Yolo训练后的效果,证明了模型的有效性。
摘要由CSDN通过智能技术生成

        最近做了一个打架识别的项目,有感于当时开发资料的匮乏,特做一个小结,供大家参考。闲话少叙,看看效果先。                     


1. 研究现状

        目前打架检测,主要有3种主流的方法,分别是:

(1)基于Detection的打架检测。其主要思想是: 将打架作为一种类别,通过分类的方式,将打架行为检测出来。目前这方面的研究较少,且没有公开可用的数据集,想要沿着这条路走,需自备数据集,自行探索。

(2)基于骨骼点的打架检测。其主要思想是:通过OpenPose等框架,将人体的骨骼点回归出来,然后基于骨骼点写逻辑,进行判断。目前有一部分人是基于这个做的打架检测。但是打架过程中如果人员纠缠在一起的话,利用骨骼点准确判断就比较困难。

(3)基于视频理解的打架检测。其主要思想是: 基于时序进行判断。打架对时序有着较强的依赖,利用目标检测技术去识别打架容易出现误检测或者漏检情况。另外如果人员重叠遮挡严重的话,基于骨骼点的行为识别,就有很大的局限性。而基于视频理解的打架检测,则较好的解决了这些问题。但是这种实现起来难度也较大。


2.选取的方案

        我这里选择方案1,即基于目标检测做打架识别。前文也提到了,目前数据集十分匮乏。笔者也是反复查找,终于拿到了国外的一份很好的数据集。考虑到不同于一般的目标检测任务,所以数据集也是笔者亲自标注的,没有让第三方人员介入,目的就是保证标注的合理与精准。

基本流程是:

Labelme标注 -> 标注数据整理与格式转换 -> 模型训练 -> 部署


2.1 标注

        目前开发工作都是在win11上,采用的是开源的labelme工具。笔者也是头一次使用该工具。使用之后才发现其实还是不错的,功能十分齐全。另外我拿到的国外数据集,是视频的形式,因此需要先将视频转换成图片,然后再进行标注。具体可以参考这篇文章,写的不错。

Labelme标注视频https://www.pudn.com/news/623b0a3f49c1dc3c8980863b.html

Fig.1 利用Labelme进行数据标注

         利用几天空闲时间,笔者标注了上千张图片,然后剔除了一些无效图像,最终标注的数据集的信息如下:

Matlab是一种非常强大和流行的科学计算和数据分析工具,它可以被用于各种领域的人工智能算法,包括行为识别。 在Matlab中,我们可以利用机器学习和深度学习算法来设计和实现行为识别模型。这些算法包括支持向量机(SVM)、随机森林、卷积神经网络(CNN)和递归神经网络(RNN)等。 在行为识别中,我们首先需要收集和准备训练数据。这些数据可以来自于传感器、视频、音频等一系列来源。然后,使用Matlab中的数据预处理工具,我们可以对数据进行清洗、分割和标注,以便用于训练模型。 接下来,我们可以使用Matlab中的机器学习和深度学习工具箱来训练行为识别模型。通过调整模型的参数和网络结构,我们可以优化模型的性能。同时,借助于Matlab的图形界面和编程功能,我们可以轻松地进行实验和对比不同算法的效果。 完成训练后,我们可以使用训练好的模型对新的数据进行行为识别。Matlab提供了丰富的工具和函数来帮助我们加载和使用训练好的模型,以及对新数据进行预测和分类。 此外,Matlab还提供了一些辅助工具,例如统计分析、可视化和报告生成,用于分析和展示行为识别结果。 综上所述,Matlab是一个功能强大的工具,适用于行为识别人工智能算法的设计、实现和评估。无论是初学者还是专业人士,使用Matlab可以帮助我们更加高效和准确地进行行为识别研究和应用开发。
评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深度学习哪些事

谢谢老板,请我喝杯蜜雪冰城呗

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值