机器学习中经验风险最小化、结构风险最小化分别对应最大似然估计、最大后验估计
1. 极大似然估计
L
(
θ
;
x
)
=
f
(
x
;
θ
)
=
f
(
x
1
,
.
.
.
,
x
n
;
θ
)
=
∏
N
f
(
x
;
θ
)
θ
^
M
L
=
arg max
θ
L
(
θ
;
x
)
=
arg max
θ
∏
N
f
(
x
;
θ
)
L(\theta;x)=f(x;\theta)=f(x_1,...,x_n;\theta)=\prod_Nf(x;\theta)\\\hat{\theta}_{ML}=\argmax_\theta L(\theta;x)=\argmax_\theta\prod_Nf(x;\theta)
L(θ;x)=f(x;θ)=f(x1,...,xn;θ)=N∏f(x;θ)θ^ML=θargmaxL(θ;x)=θargmaxN∏f(x;θ)
另外,对数似然不会改变 argmax函数解,而且还可以将积变成和的形式
θ
^
M
L
=
arg max
θ
∑
N
l
o
g
f
(
x
i
;
θ
)
\hat{\theta}_{ML}=\argmax_{\theta} \sum_N logf(x_i;\theta)
θ^ML=θargmaxN∑logf(xi;θ)
再进一步,似然函数除以m也不会改变解,所以可以写为:
θ
^
M
L
=
arg max
θ
E
[
l
o
g
f
(
x
;
θ
)
]
\hat{\theta}_{ML}=\argmax_{\theta}\mathbb{E}[ logf(x;\theta)]
θ^ML=θargmaxE[logf(x;θ)]
KL散度: 衡量经验分布f与模型分布F的log差异
D K L ( F ∣ ∣ f ) = E [ l o g F ( x ; θ ) − l o g f ( x ; θ ) ] D_{KL}(F||f)=\mathbb{E}[logF(x;\theta)-logf(x;\theta)] DKL(F∣∣f)=E[logF(x;θ)−logf(x;θ)]
左边一项仅涉及到数据生成过程,和模型无关。这意味着当我们训练模型最小化 KL
散度时,我们只需要最小化
− E [ l o g f ( x ; θ ) ] -\mathbb{E}[logf(x;\theta)] −E[logf(x;θ)]
所以从最小化KL散度的角度,也可以得到最大似然估计。
1.2 条件对数似然
最大似然估计很容易扩展到估计条件概率 P(y | x;θ),从而给定 x 预测 y 。
θ
M
L
=
arg max
θ
P
(
Y
∣
X
;
θ
)
{\theta}_{ML}=\argmax_{\theta}P(Y|X;\theta)
θML=θargmaxP(Y∣X;θ)
样本
X
=
{
x
1
,
.
.
.
,
x
n
}
X=\{x_1,...,x_n\}
X={x1,...,xn}独立同分布,用对数似然函数表示:
θ
M
L
=
arg max
θ
∑
N
l
o
g
P
(
y
i
∣
x
i
;
θ
)
\theta_{ML}=\argmax_{\theta}\sum_NlogP(y_i|x_i;\theta)
θML=θargmaxN∑logP(yi∣xi;θ)
2. 贝叶斯估计
贝叶斯公式:
贝叶斯估计:
其中,
π
(
θ
)
\pi(\theta)
π(θ)为
θ
\theta
θ的先验分布(prior distribution),表示对参数
θ
\theta
θ的主观认识,非样本信息。贝叶斯派认为参数不是确定的,所以用随机变量表示,并且服从某个分布;
π
(
θ
∣
x
)
\pi(\theta|x)
π(θ∣x)为
θ
\theta
θ的后验分布(posterior distribution);
和最大似然估计不同,贝叶斯方法使用 θ 的全分布,而非点估计;并且加入先验分布。
贝叶斯估计可以看作是,在假定
θ
\theta
θ服从先验分布
π
(
θ
)
\pi(\theta)
π(θ)情况下,根据样本信息去校正先验分布,得到后验分布
π
(
θ
∣
x
)
\pi(\theta|x)
π(θ∣x)。
后验分布是一个条件分布,通常我们取后验分布的期望作为参数的估计值。
2.1 最大后验估计(Maximum A Posteriori estimation,MAP)
参数 θ 的完整贝叶斯后验分布进行预测,有时候是很难的。所以用单点估计来近似。
采用极大似然估计的思想,考虑后验分布极大化而估计
θ
\theta
θ, 就变成了最大后验估计。
m
(
x
)
m(x)
m(x)与
θ
\theta
θ无关,简化计算。
对上面的式子稍作处理(取对数):
取对数后,原来的似然函数变为对数似然函数,又加上
l
o
g
π
(
θ
)
log\pi(\theta)
logπ(θ)。可以认为
l
o
g
π
(
θ
)
log\pi(\theta)
logπ(θ),为正则化项。所以,MAP可以认为是带有正则化项的最大似然学习。
当然,这并不是总是正确的,例如,有些正则化项可能不是一个概率分布的对数,还有些正则化项依赖于数据,当然也不会是一个先验概率分布。不过,MAP提供了一个直观的方法来设计复杂但可解释的正则化项,例如,更复杂的惩罚项可以通过混合高斯分布作为先验得到,而不是一个单独的高斯分布。
2.2 共轭先验
贝叶斯估计中,如果选取先验分布 π ( θ ) \pi(\theta) π(θ) 和后验分布 π ( θ ∣ x ) \pi(\theta|x) π(θ∣x)属于同一个分布族(即共轭分布),则称 π ( θ ) \pi(\theta) π(θ)为似然函数 f ( x ∣ θ ) f(x|\theta) f(x∣θ)的共轭先验.
共轭先验的选取有如下好处:
a).符合直观,先验分布和后验分布应该是相同形式的;
b).可以给出后验分布的解析形式;
c).可以形成一个先验链,即现在的后验分布可以作为下一次计算的先验分布,如果形式相同,就可以形成一个链条。
常见的共轭先验有:Beta分布(二项分布)、Dirichlet分布(多项分布)。
很显然,共轭先验的选取很大程度上是基于数学理论的方便性,带有很强的主观色彩,而这也是饱受频率学派诟病的一点。频率学派认为,只有在先验分布有一种不依赖主观的意义,且能根据适当的理论或以往的经验决定时,才允许在统计推断中使用先验分布,否则就会丧失客观性。
参考
[1] https://zhuanlan.zhihu.com/p/61593112 (主要参考来源)
[2] 花书 5.6
[3] 概率学派和贝叶斯学派的区别
[4] 深度学习中的两种不确定性