C++的数据结构与算法学习(四)快速排序

1.算法描述

快速排序(Quicksort),最早由东尼·霍尔基于分治思想提出的排序算法,现在各种语言中自带的排序库很多使用的都是快速排序。
快速排序的基本思想:通过一次排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。

  • 最基础的算法步骤:使用分治法来把一个串(list)分为两个子串(sub-lists)。具体算法描述如下:

  • 从数列中挑出一个元素,称为 “基准”(pivot);

  • 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;

  • 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

  • 动态图演示
    在这里插入图片描述

  • 算法优化思路

  • 对于小规模数组进行插入排序优化

  • 在数据近乎有序时,递归树的平衡度差会造成算法复杂度退化成 O ( n 2 ) O_{(n2)} O(n2),利用随机选取元素进行排序的方法优化

  • 重新排序数列时相同的数可以到任一边,这种操作会使得算法遇到大量重复元素的排序时需要重复操作,优化:双路快速排序&三路快速排序

2.算法实现及优化

  • 三种QuickSort算法实现
//Author:cheng.jiang

#ifndef QUICK_SORT_H
#define QUICK_SORT_H

#include <iostream>
#include "InsertionSort.h"
using namespace std;

// 将arr[l...mid]和arr[mid+1...r]两部分进行partition
// 返回p, 使得arr[l...p-1] < arr[p] ; arr[p+1...r] > arr[p]
template<typename  T>
int __partition(T arr[], int l, int r){
    //优化2
    swap(arr[l],arr[rand()%(r-l+1)+l]);
    T v = arr[l];
    int j=l;//初始化j
    for( int i= l; i <= r ; i++){
            if(arr[i]<v){
                swap(arr[j+1],arr[i]);//交换位置
                j++;
            }
        }
    swap(arr[l],arr[j]);
    return j;

   
    
}
// 递归使用快速排序,对arr[l...r]的范围进行排序
template<typename  T>
void __quickSort(T arr[], int l, int r){
    // 优化1
    if( r - l <= 15 ){
        insertionSort(arr,l,r);
        return;
    }

    int p = __partition(arr, l, r);
    __quickSort(arr, l ,p-1);
    __quickSort(arr, p+1, r);

}
//定义quickSort()函数
template<typename T>
void quickSort(T arr[], int n){
    //优化2,随机化pivot标定元素
    srandom(time(NULL));

    __quickSort( arr , 0 , n-1 );
}

// 双路快速排序的partition
// 返回p, 使得arr[l...p-1] < arr[p] ; arr[p+1...r] > arr[p]
template <typename T>
int _partition2Ways(T arr[], int l, int r){

    // 随机在arr[l...r]的范围中, 选择一个数值作为标定点pivot
    swap( arr[l] , arr[rand()%(r-l+1)+l] );
    T v = arr[l];

    // arr[l+1...i) <= v; arr(j...r] >= v
    int i = l+1, j = r;
    while( true ){
        // 注意这里的边界, arr[i] < v, 不能是arr[i] <= v
        while( i <= r && arr[i] < v )
            i ++;

        // 注意这里的边界, arr[j] > v, 不能是arr[j] >= v
        while( j >= l+1 && arr[j] > v )
            j --;

        if( i > j )
            break;

        swap( arr[i] , arr[j] );
        i ++;
        j --;
    }

    swap( arr[l] , arr[j]);

    return j;
}

// 对arr[l...r]部分进行快速排序
template <typename T>
void _quickSort2Ways(T arr[], int l, int r){

    // 对于小规模数组, 使用插入排序进行优化
    if( r - l <= 15 ){
        insertionSort(arr,l,r);
        return;
    }

    // 调用双路快速排序的partition
    int p = _partition2Ways(arr, l, r);
    _quickSort2Ways(arr, l, p-1 );
    _quickSort2Ways(arr, p+1, r);
}

template <typename T>
void quickSort2Ways(T arr[], int n){

    srand(time(NULL));
    _quickSort2Ways(arr, 0, n-1);
}

// 递归的三路快速排序算法
template <typename T>
void __quickSort3Ways(T arr[], int l, int r){

    // 对于小规模数组, 使用插入排序进行优化
    if( r - l <= 15 ){
        insertionSort(arr,l,r);
        return;
    }

    // 随机在arr[l...r]的范围中, 选择一个数值作为标定点pivot
    swap( arr[l], arr[rand()%(r-l+1)+l ] );

    T v = arr[l];

    int lt = l;     // arr[l+1...lt] < v
    int gt = r + 1; // arr[gt...r] > v
    int i = l+1;    // arr[lt+1...i) == v
    while( i < gt ){
        if( arr[i] < v ){
            swap( arr[i], arr[lt+1]);
            i ++;
            lt ++;
        }
        else if( arr[i] > v ){
            swap( arr[i], arr[gt-1]);
            gt --;
        }
        else{ // arr[i] == v
            i ++;
        }
    }

    swap( arr[l] , arr[lt] );

    __quickSort3Ways(arr, l, lt-1);
    __quickSort3Ways(arr, gt, r);
}

template <typename T>
void quickSort3Ways(T arr[], int n){

    srand(time(NULL));
    __quickSort3Ways( arr, 0, n-1);
}
#endif //QUICK_SORT_H

双路快速排序中: while( j >= l+1 && arr[j] > v ) while( i <= r && arr[i] < v )不取等号的原因分析:
a. 对于arr[i]<v和arr[j]>v的方式,第一次partition得到的分点是数组中间;
b. 对于arr[i]<=v和arr[j]>=v的方式,第一次partition得到的分点是数组的倒数第二个。
这是因为对于连续出现相等的情况,a方式会交换i和j的值;而b方式则会将连续出现的这些值归为其中一方,使得两棵子树不平衡

  • 测试代码
#include <iostream>
#include "SortTestHelper.h"
#include "InsertionSort.h"
#include "MergeSort.h"
#include "QuickSort.h"
using namespace std;




int main(){

    int n = 50000;

    // 测试1 测试随机数组
    cout<<"Test for random array, size = "<<n<<", random range [0, "<<n<<"]"<<endl;
    int* arr1 = SortTestHelper::generateRandomArray(n,0,n);
    int* arr2 = SortTestHelper::copyIntArray(arr1, n);
    int* arr3 = SortTestHelper::copyIntArray(arr1, n);
    int* arr4 = SortTestHelper::copyIntArray(arr1, n);
    int* arr5 = SortTestHelper::copyIntArray(arr1, n);
    int* arr6 = SortTestHelper::copyIntArray(arr1, n);

    SortTestHelper::testSort("Insertion Sort", insertionSort, arr1, n);
    SortTestHelper::testSort("Merge Sort",     mergeSort,     arr2, n);
    SortTestHelper::testSort("Merge Sort 2",   mergeSort2,    arr3, n);
    SortTestHelper::testSort("Quick Sort", quickSort, arr4, n);
    SortTestHelper::testSort("Quick Sort 2 Ways", quickSort2Ways, arr5, n);
    SortTestHelper::testSort("Quick Sort 3 Ways", quickSort3Ways, arr6, n);

    delete[] arr1;
    delete[] arr2;
    delete[] arr3;
    delete[] arr4;
    delete[] arr5;
    delete[] arr6;


    cout<<endl;


    // 测试2 测试近乎有序的数组
    int swapTimes = 10;
    assert( swapTimes >= 0 );

    cout<<"Test for nearly ordered array, size = "<<n<<", swap time = "<<swapTimes<<endl;
    arr1 = SortTestHelper::generateNearlyOrderedArray(n,swapTimes);
    arr2 = SortTestHelper::copyIntArray(arr1, n);
    arr3 = SortTestHelper::copyIntArray(arr1, n);
    arr4 = SortTestHelper::copyIntArray(arr1,n);
    arr5 = SortTestHelper::copyIntArray(arr1,n);
    arr6 = SortTestHelper::copyIntArray(arr1,n);

    SortTestHelper::testSort("Insertion Sort", insertionSort, arr1, n);
    SortTestHelper::testSort("Merge Sort",     mergeSort,     arr2, n);
    SortTestHelper::testSort("Merge Sort 2",   mergeSort2,    arr3, n);
    SortTestHelper::testSort("Quick Sort", quickSort, arr4, n);
    SortTestHelper::testSort("Quick Sort 2 Ways", quickSort2Ways, arr5, n);
    SortTestHelper::testSort("Quick Sort 3 Ways", quickSort3Ways, arr6, n);

    delete[] arr1;
    delete[] arr2;
    delete[] arr3;
    delete[] arr4;
    delete[] arr5;
    delete[] arr6;


    cout<<endl;


     // 测试3 测试存在包含大量相同元素的数组
    cout<<"Test for random array, size = "<<n<<", random range [0,10]"<<endl;
    arr1 = SortTestHelper::generateRandomArray(n,0,10);
    arr2 = SortTestHelper::copyIntArray(arr1, n);
    arr3 = SortTestHelper::copyIntArray(arr1, n);
    arr4 = SortTestHelper::copyIntArray(arr1,n);
    arr5 = SortTestHelper::copyIntArray(arr1,n);
    arr6 = SortTestHelper::copyIntArray(arr1,n);

    SortTestHelper::testSort("Insertion Sort", insertionSort, arr1, n);
    SortTestHelper::testSort("Merge Sort",     mergeSort,     arr2, n);
    SortTestHelper::testSort("Merge Sort 2",   mergeSort2,    arr3, n);
    // 在包含大量重复元素的情况下, QuickSort会退化成O(n^2)算法, 在这里不做执行
    //SortTestHelper::testSort("Quick Sort", quickSort, arr4, n);
    SortTestHelper::testSort("Quick Sort 2 Ways", quickSort2Ways, arr5, n);
    SortTestHelper::testSort("Quick Sort 3 Ways", quickSort3Ways, arr6, n);

    delete[] arr1;
    delete[] arr2;
    delete[] arr3;
    delete[] arr4;
    delete[] arr5;
    delete[] arr6;

    return 0;
}
  • 实验结果
    在这里插入图片描述

3.算法分析

快速排序是一种原地排序,只需要一个很小的栈作为辅助空间,空间复杂度为 O ( l o g 2 n ) O_(log2n) O(log2n),所以适合在数据集比较大的时候使用。
时间复杂度比较复杂,最好的情况是 O ( n ) O_{(n)} O(n),最差的情况是 O ( n 2 ) O_{(n2)} O(n2),所以平时说的 O ( n l o g n ) O_(nlogn) O(nlogn),为其平均时间复杂度。对于随机数组、近乎有序的数组和大量重复元素的数组,三种QuickSort的性能各有不同。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值