回溯算法(深度优先+状态重置+剪枝)

本文深入讲解回溯算法,包括其定义、应用场景及实现原理。通过三个示例:全排列、组合与去重全排列,详细解析回溯算法的编码过程与复杂度分析。强调画图的重要性,帮助理解递归结构与剪枝条件。

1.什么是回溯算法

“回溯”算法也叫“回溯搜索”算法,主要用于在一个庞大的空间里搜索我们所需要的问题的解。“回溯”指的是“状态重置”,可以理解为“回到过去”、“恢复现场”,是在编码的过程中,是为了节约空间而使用的一种技巧。而回溯其实是“深度优先遍历”特有的一种现象。之所以是“深度优先遍历”,是因为我们要解决的问题通常是在一棵树上完成的,在这棵树上搜索需要的答案,一般使用深度优先遍历。

2. 示例1(回溯+状态重置)

“全排列”就是一个非常经典的“回溯”算法的应用。我们知道,N 个数字的全排列一共有 N!这么多个。

以数组 [1, 2, 3] 的全排列为例。

  • 我们先写以 1 开头的全排列,它们是:[1, 2, 3], [1, 3, 2];
  • 以 2 开头的全排列,它们是:[2, 1, 3], [2, 3, 1];
  • 最后写以 3 开头的全排列,它们是:[3, 1, 2], [3, 2, 1]

我们只需要按顺序枚举每一位可能出现的情况,已经选择的数字在接下来要确定的数字中不能出现。按照这种策略选取就能够做到不重不漏,把可能的全排列都枚举出来。

使用编程的方法得到全排列,就是在如下图这样的一个树形结构中进行编程,具体来说,就是执行一次深度优先遍历,从树的根结点到叶子结点形成的路径就是一个全排列

下面我们解释如何编码:
(1)首先这棵树除了根结点和叶子结点以外,每一个结点做的事情其实是一样的,即在已经选了一些数的前提下,我们需要在剩下还没有选择的数中按照顺序依次选择一个数,这显然是一个递归结构
(2)递归的终止条件是,数已经选够了,因此我们需要一个变量来表示当前递归到第几层,我们把这个变量叫做 depth
(3)这些结点实际上表示了搜索(查找)全排列问题的不同阶段,为了区分这些不同阶段,我们就需要一些变量来记录程序进行到哪一步了,在这里我们需要两个变量:
【a】已经选了哪些数,到叶子结点时候,这些已经选择的数就构成了一个全排列(path)
【b】一个布尔数组 isused,初始化的时候都为 false 表示这些数还没有被选择,当我们选定一个数的时候,就将这个数组的相应位置设置为 true ,这样在考虑下一个位置的时候,就能够以 O(1) 的时间复杂度判断这个数是否被选择过,这是一种“以空间换时间”的思想

把这两个变量称之为“状态变量”,它们表示了我们在求解一个问题的时候所处的阶段。

(4)在非叶子结点处,产生不同的分支,这一操作的语义是:在还未选择的数中依次选择一个元素作为下一个位置的元素,这显然得通过一个循环实现。
(5)因为是执行深度优先遍历,从较深层的结点返回到较浅层结点的时候,需要做**“状态重置”,即“回到过去”、“恢复现场”, 将最近加入到path变量中的数弹出,并将isused数组中对应位置设置为False**
程序实现

def permutation(nums):
    result = []
    pre = []    # 保存临时结果
    isused = [False]*len(nums)

    def recursion(pre, isused):
        if len(pre) == len(nums):
            # 此处需要注意,不可使用res.append(pre), 因为后面对pre的改变此处也会随之改变,因此需要深度复制
            result.append(pre.copy())
            return
        for i in range(len(nums)):
            if isused[i] == False:
                pre.append(nums[i])
                isused[i] = True
                recursion(pre, isused)
                pre.pop()
                isused[i] = False
                
    recursion(pre, isused)
    return result

if __name__ == "__main__":
    result = permutation([1, 2, 3, 4])
    print(result)

2.2 复杂度分析

(回溯算法的时间复杂度一般都比较高,有些问题分析起来很复杂,我个人觉得没有必要掌握,而且剪枝剪得好的话,复杂度会降得很低,因此分析的最坏时间复杂度的意义也不是很大,视情况而定。)
时间复杂度:O(NxN!)

3. 示例2(回溯不带状态重置)

给定两个整数 n 和 k,返回 1 … n 中所有可能的 k 个数的组合

输入: n = 4, k = 2
输出:
[
  [2,4],
  [3,4],
  [2,3],
  [1,2],
  [1,3],
  [1,4],
]

在该例子中不需要设置isused数组来记录哪些数字被使用过了,因为组合和排列不同,对于组合而言,[1, 2]和[2, 1]是同一个组合,而对于排列而言, 则是不同的排列

完整程序

class Solution:
    def combine(self, n: int, k: int) -> List[List[int]]:

        if n == [] or k>n:
            return []
        path = []
        result = []
        start = 1
        self.digui(path, result, start, k, n)
        return result

    def digui(self, path, result, start, k, n):
        if len(path) == k:
            result.append(path[:])
            return

        for i in range(start, n+1):
            path.append(i)
            start += 1
            self.digui(path, result, start, k, n)
            path.pop()

4. 示例3 (回溯+状态重置+剪枝)

给定一个可包含重复数字的序列,返回所有不重复的全排列。

输入: [1,1,2]
输出:
[
  [1,1,2],
  [1,2,1],
  [2,1,1]
]

此处题目要求找出所有不重复的全排列, 即要求去重,所以在回溯法中必须剪枝以达到去重效果,程序如下:

class Solution:
    def permuteUnique(self, nums: List[int]) -> List[List[int]]:
        res = []
        pre = []
        isused = [False]*len(nums)
        # 先进行排序
        nums.sort()
        self.digui(nums, isused, pre, res)
        return res
        
    def digui(self, nums, isused, pre, res):
        
        if len(pre) == len(nums):
            res.append(pre.copy())
            return
        
        for i in range(len(nums)):
            # 增加条件剪枝去重
            if i>0 and nums[i]==nums[i-1] and isused[i-1]==False or isused[i]:
                continue
            else:
                isused[i]=True
                pre.append(nums[i])
            
            self.digui(nums, isused, pre, res)
            isused[i] = False
            pre.pop()

总体思路就是先将列表元素排序,然后按照示例1方法回溯查找所有排列,增加条件nums[i]==nums[i-1] and isused[i-1]==False进行剪枝, 为什么该条件能够剪枝,自己画树图模拟查找过程即可发现

5. 总结

先画图,画图是非常重要的,只有画图才能帮助我们想清楚递归结构,想清楚如何剪枝。在画图的过程中思考清楚:
(1)分支如何产生;
(2)题目需要的解在哪里?是在叶子结点、还是在非叶子结点、还是在从跟结点到叶子结点的路径?
(3)哪些搜索是会产生不需要的解的?例如:产生重复是什么原因,如果在浅层就知道这个分支不能产生需要的结果,应该提前剪枝,剪枝的条件是什么,代码怎么写?

6.参考

leetcode 全排列题解

### 回溯法的状态空间树概念 状态空间树是一种用于描述回溯法解决问题过程中所有可能状态的结构化表示方法。它通过深度优先搜索的方式逐步构建,每一层代表一个问题变量的选择范围,而每一条路径则对应一种可能的解决方案[^1]。 在实际应用中,状态空间树由根节点出发,逐层扩展到叶节点为止。对于某些特定问题,如子集选择问题,其对应的解空间被称为子集树。这种情况下,若需从一个包含 \( n \) 个元素的集合中选出满足一定条件的子集,则该子集树会有 \( 2^n \) 个叶子节点以及总计 \( 2^{n+1} - 1 \) 个节点[^2]。 #### 解空间与约束条件的关系 解空间是指所有潜在可行解组成的集合。它的规模取决于具体问题定义下的元组形式及其取值域大小。例如,在经典的八皇后问题里,如果仅规定八个皇后互不同行这一特性来构造元组,则理论上存在 \( 8^8 \) 种可能性;然而进一步考虑到它们也不能处于相同列或者对角线之后,有效排列数量缩减至 \( 8! \)[^3]。 为了提高效率并降低不必要的计算负担,回溯算法会在探索过程引入剪枝操作——即一旦发现当前部分解违反任何预设好的约束或界限准则时立即停止对该分支后续发展尝试的行为模式。这样不仅可以显著减少所需考察的整体情况数目,而且还能保证最终获得的是符合条件的最佳解答之一[^1]。 ### 回溯法实现方式 以下是基于 Python 的通用框架代码展示如何运用递归来模拟整个状态空间树遍历流程: ```python def backtrack(state, choices): if is_solution(state): # 判断是否达到目标状态 process_solution(state) return for choice in choices: # 遍历所有可用选项 if valid(choice, state): # 检查当前选项目前状态下是否合法 make_move(state, choice) # 执行移动/更新状态 backtrack(state, remaining_choices(choices)) # 继续深入下一个层次 unmake_move(state, choice) # 撤销刚才的操作以便恢复原状 # 辅助函数说明: # is_solution(): 测试state是否已经构成了完整的解。 # process_solution(): 对找到的有效解做相应处理。 # valid(): 确定choice加入现有state后仍保持合法性。 # make_move() & unmake_move(): 修改和还原state以反映新旧变化。 # remaining_choices(): 返回剩余未被使用的候选列表。 ``` 此模板展示了基本逻辑架构,但针对不同类型的实际应用场景还需要定制具体的细节实现。 ### 应用实例分析 以装载问题为例(假设有若干重量不同的物品放入容量有限制的容器内),我们可以建立如下模型并通过上述机制求得最优填装方案。同样地,“旅行商问题”也可以借助类似的思路去寻找最短环游路线等等。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值