paper link: Cluster-based Beam Search for Pointer-Generator Chatbot Grounded by Knowledge
1. intro
本文研究的问题如下:给定一段对话历史和一些与对话相关的文章片段,目标是生成有意义的、与给定背景信息密切相关的答复,本文重点关注的是以下三个方面:
- 对话历史建模
- 如何充分使用非结构化的外部知识
- 生成回复的多样性和相关性
本文的主要贡献在于:
- 提出了一个泛化的指针生成机制(pointer generator),使得同时从对话历史和外部知识中复制实体。
- 提出了一种聚类Beam Search算法,可以在解码的时候动态地将相似语义地序列分组归类,避免生成通用回复。
总体模型架构如下图:
2. Data Cleaning and Fact Retrieval
论文中认为片段的每一句话是一个事实(fact),因为文章很多,所以作者使用了tfidf
来选取与对话最相关的前topk个事实
sim
(
H
,
F
)
=
∑
w
∈
H
i
d
f
(
w
)
×
count
(
w
in
F
)
\operatorname{sim}(H, F)=\sum_{w \in H} i d f(w) \times \operatorname{count}(w \operatorname{in} F)
sim(H,F)=w∈H∑idf(w)×count(winF)
其中, H H H是对话历史, F F F是事实句子(来自事实文章中), w w w是对话中的一个词, i d f ( w ) idf(w) idf(w)是倒文档频率(此处是指 w w w在所有对话中出现的频率的倒数)上式的含义是在对话中出现频率低,而在文档某句话中出现次数多的词,决定了对话与该事实的相关度。最后将得到的前topk个事实按照初始出现的顺序拼接到一起。
3. encoder
对于对话历史和背景事实,模型使用两个独立的单层双向LSTM网络进行编码,得到两个隐层状态:
H
H
=
(
h
1
H
,
h
2
H
,
…
,
h
L
H
)
H
F
=
(
h
1
F
,
h
2
F
,
…
,
h
T
F
)
\begin{array}{l} H^{H}=\left(h_{1}^{H}, h_{2}^{H}, \ldots, h_{L}^{H}\right) \\ \\ H^{F}=\left(h_{1}^{F}, h_{2}^{F}, \ldots, h_{T}^{F}\right) \end{array}
HH=(h1H,h2H,…,hLH)HF=(h1F,h2F,…,hTF)
然后将对话历史的第一个和最后一个隐藏状态连接,然后线性投影结果作为decoder的初始状态
3. decoder
Decoder主要包含三个模块:
- 分别针对于对话历史和背景事实的注意力机制
- 生成回复的模式预测
- 词生成
3.1 Attention Mechanism
在解码的每个时刻
t
t
t ,利用解码器的隐层状态
h
t
R
h_t^{R}
htR分别对
H
H
H^H
HH和
H
F
H^F
HF计算attention:
e
t
i
H
=
v
H
T
⋅
tanh
(
W
h
H
⋅
h
i
H
+
W
r
H
⋅
h
t
R
+
b
H
)
α
t
i
H
=
Softmax
(
e
t
i
H
)
h
t
H
∗
=
∑
i
=
1
L
α
t
i
H
h
i
H
\begin{array}{l} e_{t i}^{H}=v_{H}^{T} \cdot \tanh \left(W_{h}^{H} \cdot h_{i}^{H}+W_{r}^{H} \cdot h_{t}^{R}+b^{H}\right) \\ \\ \alpha_{t i}^{H}=\operatorname{Softmax}\left(e_{t i}^{H}\right) \\ \\ h_{t}^{H *}=\sum_{i=1}^{L} \alpha_{t i}^{H} h_{i}^{H} \end{array}
etiH=vHT⋅tanh(WhH⋅hiH+WrH⋅htR+bH)αtiH=Softmax(etiH)htH∗=∑i=1LαtiHhiH
其中
W
h
H
W_h^H
WhH,
W
r
H
W_r^H
WrH,
b
H
b^H
bH,
v
H
T
v_H^T
vHT是可训练参数
e t j F = v H F ⋅ tanh ( W h F ⋅ h j F + W r F ⋅ h t R + b F ) α t j F = Softmax ( e t j F ) h t F ∗ = ∑ j = 1 T α t j F h j F \begin{aligned} e_{t j}^{F} &=v_{H}^{F} \cdot \tanh \left(W_{h}^{F} \cdot h_{j}^{F}+W_{r}^{F} \cdot h_{t}^{R}+b^{F}\right) \\ \\ \alpha_{t j}^{F} &=\operatorname{Softmax}\left(e_{t j}^{F}\right) \\ h_{t}^{F *} &=\sum_{j=1}^{T} \alpha_{t j}^{F} h_{j}^{F} \end{aligned} etjFαtjFhtF∗=vHF⋅tanh(WhF⋅hjF+WrF⋅htR+bF)=Softmax(etjF)=j=1∑TαtjFhjF
3.2 Mode Prediction
本模块主要是借鉴自pointer generator (See, Liu, and Manning 2017),解决生成过程中的OOV问题,它有两种模式:(1)生成一个词;(2)复制一个词。而在该模型中,对指针生成器进行了扩展,转换成三种模式:(1)生成一个词;(2)从对话历史中复制一个词;(3)从事实中复制一个词。
在解码的每个时间步
t
t
t,使用softmax多分类器来得到每次模式的概率:
Pr
(
m
o
d
e
=
m
∣
t
,
H
,
F
)
=
softmax
(
F
F
(
h
t
F
∗
⊕
h
t
H
∗
⊕
h
t
R
⊕
x
t
)
)
\operatorname{Pr}(\bmod e=m \mid t, H, F)=\operatorname{softmax}\left(F F\left(h_{t}^{F *} \oplus h_{t}^{H *} \oplus h_{t}^{R} \oplus x_{t}\right)\right)
Pr(mode=m∣t,H,F)=softmax(FF(htF∗⊕htH∗⊕htR⊕xt))
其中 x t x_t xt 表示解码器在时间步 t t t 的输入向量
3.3 Word prediction
最终,模型生成一个词的概率等于三种模式生成的概率相加:
Pr
(
w
∣
t
,
H
,
F
)
=
∑
m
=
1
3
Pr
(
m
∣
t
,
H
,
F
)
⋅
Pr
m
(
w
∣
t
,
H
,
F
)
\operatorname{Pr}(w \mid t, H, F)=\sum_{m=1}^{3} \operatorname{Pr}(m \mid t, H, F) \cdot \operatorname{Pr}_{m}(w \mid t, H, F)
Pr(w∣t,H,F)=m=1∑3Pr(m∣t,H,F)⋅Prm(w∣t,H,F)
对于 Seq2Seq生成一个词:
P
r
m
(
w
∣
t
,
H
,
F
)
=
softmax
(
W
g
h
t
R
)
P_{r m}(w \mid t, H, F)=\operatorname{softmax}\left(W_{g} h_{t}^{R}\right)
Prm(w∣t,H,F)=softmax(WghtR)
对于从对话历史或者背景事实中复制一个词:
P
r
m
(
w
∣
t
,
H
,
F
)
=
α
t
i
H
or
α
t
i
F
P_{r_{m}}(w \mid t, H, F)=\alpha_{t i}^{H} \text { or } \alpha_{t i}^{F}
Prm(w∣t,H,F)=αtiH or αtiF
4. Cluster-based Beam Search
传统的 beam search 有一个固定大小的候选集上限k,而这 k 个最有可能的候选项有很多是语义相似的,例如i donot known
, i donnot see
,i donot understand
,虽然它们的概率都很高,但是对于生成的多样性来讲没有意义。因此,作者提出了一种新的基于聚类的 Beam Search 算法:
主要过程如下:
- 首先根据对数似然概率选取前
BS*2
个候选项 - 然后使用K-means聚成K个簇,聚类的特征为已解码序列的词向量平均
- 在每一个簇中选取前
BS/K
个候选项作为下一步解码的候选集
其中BS
表示束宽(beam size)
作用:语义相似的候选项会在一个簇中,不同簇中候选项含义不同,这样就可以在不增加Beam Search容量的前提下,增加不同语义回复的可能性。
5. Remove Repeated N-grams
论文介绍到:因为使用了注意力机制,模型似乎更加注意之前那些在对话历史和事实中关注的词,因此会重复生成 N-grams。为了提高流畅性,在波束搜索过程中,不再进一步考虑具有重复二元图的假设。
6. Filter Meaningless Response using LM
在无意义的响应上使用KenLM训练一个三元语言模型
reference
Cluster-based Beam Search for Pointer-Generator Chatbot Grounded by Knowledge
paper link: Cluster-based Beam Search for Pointer-Generator Chatbot Grounded by Knowledge