大模型训练显存优化推理加速方案

本文探讨了深度学习模型的显存优化技术,包括fp32、fp16、bf16的混合精度训练以降低内存需求和提高计算速度,详细解释了混合精度训练的舍入误差和溢出错误及其解决方案——损失缩放。此外,还介绍了gradient checkpointing通过牺牲计算时间来节省内存,以及Xformers库在加速Transformer模型训练和减少显存占用上的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

当前的深度学习框架大都采用的都是fp32来进行权重参数的存储,比如Python float的类型为双精度浮点数fp64,pytorch Tensor的默认类型为单精度浮点数fp32。随着模型越来越大,加速训练模型的需求就产生了。在深度学习模型中使用fp32主要存在几个问题,第一模型尺寸大,训练的时候对显卡的显存要求高;第二模型训练速度慢;第三模型推理速度慢。其解决方案就是使用低精度计算对模型进行优化。本文主要讲解几种优化显存存储的方法。

1. fp32、fp16、bf16混合精度训练

  • FP32 是单精度浮点数,1位符号位,8位指数,23位表示小数,总共32位
  • BF16 是对FP32单精度浮点数截断数据,即用8bit 表示指数,7bit 表示小数
  • FP16 半精度浮点数,用5bit 表示指数,10bit 表示小数;
    请添加图片描述
    与32位相比,采用BF16/FP16吞吐量可以翻倍,内存需求可以减半。但是这两者精度上差异不一样,BF16 可表示的整数范围更广泛,但是尾数精度较小;FP16 表示整数范围较小,但是尾数精度较高。

1.1 混合精度训练

直接使用半精度进行计算会导致的两个问题的处理:舍入误差(Rounding Error)和溢出错误(Grad Overflow / Underflow)

  • 舍入误差
    float16 的最大舍入误差约为   2 − 10 ~2 ^{-10}  210,比 float32 的最大舍入误差

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值