详解GPU显存和batch size的关系

本文详细探讨了GPU显存、算力和带宽的基础知识,并着重分析了在深度学习中,batch size的变化如何影响显存占用。通过实例解析,揭示了模型参数、输入输出和优化器在不同batch size下的显存消耗,指出训练速度不仅受限于显存,还与GPU算力相关。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

请添加图片描述最近在训练模型的时候突然被问到如下几个看似简单,实则一点也不难的问题

  • 在显存充足的情况下增加 batch size 大小会加快训练吗?
  • 扩大 batch size 占用的显存是如何变化的,显存是线性增加吗?
  • 扩大 batch size 后是哪些因素导致了显存占用增加?

前两个问题有过训练模型经验的都知道增加batch size并不会一直能加快训练,而扩大batch size也和显存占用不成线性关系。而对第三个问题被问到的一瞬间确实没有反应过来,因此便有了这篇文章。本文将对以上三个问题进行详细分析

1. GPU 基础

1.1 显存

此处不多说,就是GPU的内存,越大越好,下面展示一些GPU的显存大小

GPU型号 显存大小
1060 6G
1080 8G
T4 16G
V100 32G
A100 80G

显存分析
在深度学习中常用的数值类型是float32,一个字节8位,float32数值类型占用4个字节。如果现在有一个1000x1000的矩阵,存储类型为float32,那么占用的显存差不多就是

1000 × 1000 × 4 = 4 × 1 0 6 B ≈ 4000 K B ≈ 4 M B 1000 \times 1000 \times 4 = 4 \times 10^6 B \approx 4000KB \approx 4MB 1000×1000×4=4×106B4000KB4MB

注意此处为了计算方便使用了1000进制,实际上为1024

前面介绍的 Stable Diffusion XL 的Unet参数量为2.6B(26亿),那么其占用显存计算如下(假设按 float32 存储):
26 × 1 0 8 × 4 = 104 × 1 0 8 B ≈ 10.4 G B 26\times 10^8 \times 4 = 104 \times 10^8 B \approx 10.4 GB 26×108×4=104×108B10.4GB

1.2 算力

GPU计算单元类似于CPU中的核,用来进行数值计算。衡量计算量的单位是flop: the number of floating-point multiplication-adds,即浮点数先乘后加算一个flop。

1*2+3                  1 flop
1*2 + 3*4 + 4*5        3 flop 

算力用于衡量GPU的计算能力,计算能力越强大,速度越快。衡量计算能力的单位是flops,即每秒能执行的flop数量。

下图展示了V100的算力,其中TFLOPS是teraFLOPS的缩写,等于每秒一万亿( 1 0 12 10^{12} 1012) 次的浮点运算。常见的单位还有PFLOPS(petaFLOPS)等于每秒一千万亿( 1 0 15 10^{15} 1015)次的浮点运算
在这里插入图片描述
下图展示了大模型训练常用的GPU A100算例
在这里插入图片描述

下图展示了最强GPU H100的算力,在双精度情况下基本是V100的5倍。
在这里插入图片描述

1.3 带宽

显存和算力是GPU最重要的两个指标,另外一个重要指标就是带宽了。 带宽主要用在分布式训练中通信,带宽小将限制训练速度。

2. 神经网络显存占用

下文将以如下式所示的全连接网络为例进行讲解,其中 X ∈ R n × m X \in R^{n\times m} XRn

<think>好的,用户想了解PyTorch中DataLoader函数的详细用法功能。首先,我需要回顾一下DataLoader的基本概念。根据引用[1],DataLoader是PyTorch数据加载的核心类,所以核心功能应该是高效加载数据。接下来,用户可能需要知道参数配置,比如batch_size、shuffle、num_workers等,这些在引用[2][3]的例子中都出现过。 然后,我应该分步骤讲解参数。比如,batch_size控制每次读取的数据量,shuffle决定是否打乱顺序,num_workers涉及多进程加载,这些都需要详细解释。另外,用户可能关心实际应用中的注意事项,比如内存不足时如何处理,或者如何自定义数据集配合DataLoader使用。 用户提供的示例代码中,test_loader的创建使用了dataset、batch_size=4、shuffle=True等参数,这可能是一个实际案例。我需要结合这些例子说明每个参数的作用。同时,引用[3]提到了创建训练测试数据加载器的不同设置,比如shuffle在训练时为True,测试时为False,这也需要强调。 另外,用户可能想知道DataLoader的高级功能,比如sampler参数或collate_fn的自定义方法,但引用中没有提到这些,可能需要简要提及但说明需要进一步参考资料。此外,内存管理多进程加载的问题,比如num_workers的设置对性能的影响,也应该提到。 最后,确保回答结构清晰,分点说明参数用法,并附上示例代码。同时,根据用户要求生成相关问题,比如如何自定义数据集或处理大数据,这些可以引导用户进一步学习。</think>以下是对PyTorch中$torch.utils.data.DataLoader$函数的详细解析,结合代码示例说明其核心用法: ### 一、DataLoader核心功能 DataLoader是PyTorch中实现数据集批量加载的核心工具[^1],主要功能包括: 1. **自动批处理**:通过$batch_size$参数控制单次加载数据量 2. **数据打乱**:通过$shuffle$参数实现数据顺序随机化 3. **多进程加速**:通过$num_workers$参数启用并行数据加载 4. **内存优化**:通过$drop_last$参数处理最后不完整的批次数据 ### 二、关键参数详解 ```python DataLoader( dataset, # 必须参数,继承Dataset类的对象 batch_size=1, # 每个批次包含的样本数(默认1) shuffle=False, # 是否打乱数据顺序(训练集通常设为True) num_workers=0, # 加载数据的子进程数(0表示主进程加载) drop_last=False, # 是否丢弃最后不足batch_size的数据 pin_memory=False, # 是否将张量复制到CUDA固定内存 collate_fn=None # 自定义批次组合函数 ) ``` ### 三、典型使用场景 #### 1. 基础用法示例 ```python from torch.utils.data import DataLoader # 创建数据加载器(引用[3]示例) train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True) test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False) for batch_idx, (data, target) in enumerate(train_loader): # 训练模型逻辑 print(f'Batch {batch_idx}: 数据维度 {data.shape}, 标签维度 {target.shape}') ``` #### 2. 完整数据加载流程 ```python # 引用[2]示例代码扩展 test_loader = DataLoader( dataset=test_dataset, batch_size=4, shuffle=True, num_workers=2, drop_last=False ) for batch_data in test_loader: imgs, labs = batch_data print(f'图像张量维度: {imgs.shape}') # 输出如torch.Size([4, 3, 224, 224]) print(f'标签张量内容: {labs}') # 输出如tensor([3, 1, 2, 0]) ``` ### 四、高级使用技巧 1. **内存优化**:当GPU显存不足时,可适当减小$batch_size$或启用$pin_memory=True$ 2. **多GPU训练**:需配合$torch.nn.parallel.DistributedDataParallel$使用 3. **自定义批次**:通过$collate_fn$参数实现特殊数据组合逻辑 4. **流式数据处理**:结合$IterableDataset$处理超大数据集 ### 五、性能优化建议 - 设置$num_workers=4$~$8$可提升数据加载速度(需根据CPU核心数调整) - 当数据集较小时(<1GB),建议设置$pin_memory=True$ - 使用SSD存储时,可增大$prefetch_factor$参数值
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值