随着deepseek的火爆,整理了一份文字版的本地知识库部署步骤,这个是ragflow的配置方式,有兴趣欢迎共同探讨交流。
前置条件:docker——python
下载链接:https://github.com/infiniflow/ragflow/blob/main/README_zh.md
安装说明:
1、配置ragflow版本(默认是slim版本,需要配置成没有slim的另外一个版本——有embedding model的):
1.1、打开本地ragflow目录下面的docker文件夹的“.env”文件,可以用Notepad++打开
1.2、把(第84行,有silm)ragflow image前面的“#”号去掉,
1.3、在(第84行下面?行,没有slim)ragflow image前面加上“#”号
2、进入 **docker** 文件夹,利用提前编译好的 Docker 镜像启动服务器:
2.1、打开本地ragflow的目录(注意,不需要进入docker文件夹里面)
2.2、在目录路径上输入:cmd
2.3、按说明输入:docker compose -f docker/docker-compose.yml up -d
2.3的过程可能很久;如果 Elasticsearch 启动失败,就把.env的该字段全换成infinity,具体操作如下:
2.3.1、 停止所有容器(可以退出或者暂停)
2.3.2、然后运行: docker compose -f docker/docker-compose.yml down -v;运行环境和前置条件同2.3
2.3.3、 设置 docker/.env 目录中的 DOC_ENGINE
为 infinity
;把.env的 Elasticsearch全换成infinity
2.3.4、 启动容器:
2.3.5、运行:docker compose -f docker/docker-compose.yml up -d;运行环境和前置条件同2.3
2.4、 服务器启动成功后再次确认服务器状态: docker logs -f ragflow-server
2.5、显示以下样式则代表成功,可以去启动ragflow
____ ___ ______ ______ __
/ __ \ / | / ____// ____// /____ _ __
/ /_/ // /| | / / __ / /_ / // __ \| | /| / /
/ _, _// ___ |/ /_/ // __/ / // /_/ /| |/ |/ /
/_/ |_|/_/ |_|\____//_/ /_/ \____/ |__/|__/
* Running on all addresses (0.0.0.0)
* Running on http://127.0.0.1:9380
* Running on http://x.x.x.x:9380
INFO:werkzeug:Press CTRL+C to quit
2.6、在浏览器输入:localhost:80
2.7、注册并登录
2.8、配置大模型:点击头像——点击左边菜单栏的模型提供商——点击ollsma的添加模型
模型类型——chat,模型名称——运行cmd,输入ollama list,复制大模型名称粘贴;基础URL——运行cmd,输入ipconfig,找到ipv4的值,并输入前缀http://+IP地址+:11434;最大token数——32768或其它尽量大的数据;
2.9、系统模型设置:
聊天模型——2.8的大模型;嵌入模型——**large.zh**;
3.0、配置知识库:
3.0.1、语言——中文;解析方法——general;
3.0.2、新增文件——选择本地知识库文件
3.0.3、解析上传的文件
3.1、配置聊天助手
3.1.1、助理设置——选择知识库;