配置知识库工具ragflow

随着deepseek的火爆,整理了一份文字版的本地知识库部署步骤,这个是ragflow的配置方式,有兴趣欢迎共同探讨交流。

前置条件:docker——python

下载链接:https://github.com/infiniflow/ragflow/blob/main/README_zh.md

安装说明:

1、配置ragflow版本(默认是slim版本,需要配置成没有slim的另外一个版本——有embedding model的):

1.1、打开本地ragflow目录下面的docker文件夹的“.env”文件,可以用Notepad++打开

1.2、把(第84行,有silm)ragflow image前面的“#”号去掉,

1.3、在(第84行下面?行,没有slim)ragflow image前面加上“#”号

2、进入 **docker** 文件夹,利用提前编译好的 Docker 镜像启动服务器:

2.1、打开本地ragflow的目录(注意,不需要进入docker文件夹里面)

2.2、在目录路径上输入:cmd

2.3、按说明输入:docker compose -f docker/docker-compose.yml up -d

2.3的过程可能很久;如果 Elasticsearch 启动失败,就把.env的该字段全换成infinity,具体操作如下:

2.3.1、 停止所有容器(可以退出或者暂停)

2.3.2、然后运行: docker compose -f docker/docker-compose.yml down -v;运行环境和前置条件同2.3

2.3.3、 设置 docker/.env 目录中的 DOC_ENGINEinfinity;把.env的 Elasticsearch全换成infinity

2.3.4、 启动容器:

2.3.5、运行:docker compose -f docker/docker-compose.yml up -d;运行环境和前置条件同2.3

2.4、 服务器启动成功后再次确认服务器状态: docker logs -f ragflow-server

2.5、显示以下样式则代表成功,可以去启动ragflow

____ ___ ______ ______ __

/ __ \ / | / ____// ____// /____ _ __

/ /_/ // /| | / / __ / /_ / // __ \| | /| / /

/ _, _// ___ |/ /_/ // __/ / // /_/ /| |/ |/ /

/_/ |_|/_/ |_|\____//_/ /_/ \____/ |__/|__/

* Running on all addresses (0.0.0.0)

* Running on http://127.0.0.1:9380

* Running on http://x.x.x.x:9380

INFO:werkzeug:Press CTRL+C to quit

2.6、在浏览器输入:localhost:80

2.7、注册并登录

2.8、配置大模型:点击头像——点击左边菜单栏的模型提供商——点击ollsma的添加模型

模型类型——chat,模型名称——运行cmd,输入ollama list,复制大模型名称粘贴;基础URL——运行cmd,输入ipconfig,找到ipv4的值,并输入前缀http://+IP地址+:11434;最大token数——32768或其它尽量大的数据;

2.9、系统模型设置:

聊天模型——2.8的大模型;嵌入模型——**large.zh**;

3.0、配置知识库:

3.0.1、语言——中文;解析方法——general;

3.0.2、新增文件——选择本地知识库文件

3.0.3、解析上传的文件

3.1、配置聊天助手

3.1.1、助理设置——选择知识库;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值