插入排序(Insertion-Sort)-- 初级排序算法

本文详细介绍了插入排序(Insertion-Sort)的工作原理,它通过构建有序序列,对未排序数据进行比较并插入合适位置。算法过程包括从后向前扫描已排序序列,找到新元素的正确位置并进行插入。插入排序在最好、最坏和平均情况下的时间复杂度分别为O(n)、O(n^2)和O(n^2),空间复杂度为O(1)。此外,插入排序是稳定的排序算法。文中还提供了Python代码实现,并讨论了其特性。
摘要由CSDN通过智能技术生成

1 插入排序(Insertion-Sort)

插入排序(Insertion-Sort)的算法描述是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。

算法描述
一般来说,插入排序都采用in-place在数组上实现。具体算法描述如下:

  • 从第一个元素开始,该元素可以认为已经被排序;
  • 取出下一个元素,在已经排序的元素序列中从后向前扫描;
  • 如果该元素(已排序)大于新元素,将该元素移到下一位置;
  • 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置;
  • 将新元素插入到该位置后;
  • 重复步骤2~5。

动图演示
在这里插入图片描述
代码实现

class Solution:
    def sortArray(self, nums: List[int]) -> List[int]:
        n = len(nums)
        if not nums or n==0: return []
        for i in range(1,n):
            preIndex = i-1
            current = nums[i]
            while preIndex >= 0 and nums[preIndex] > current:
                nums[preIndex + 1] = nums[preIndex]
                preIndex = preIndex - 1
            nums[preIndex + 1] = current
        return nums

算法特性

  • 时间复杂度(最好): O ( n ) O(n) O(n)
  • 时间复杂度(最坏): O ( n 2 ) O(n^2) O(n2)
  • 时间复杂度(平均): O ( n 2 ) O(n^2) O(n2)
  • 空间复杂度: O ( 1 ) O(1) O(1)
  • 稳定性:稳定

参考资料

十大经典排序算法(动图演示)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值