论文阅读-可迁移对抗样本攻击


我的博客已全部迁往个人博客站点:oukohou.wang,敬请前往~~


Hello 大家好,本次带来的是针对目标检测的可迁移对抗样本攻击。

听起来好高大上的样子,其实就是对抗样本攻击,不过这次用在了目标检测上,然后加了个小trick, 使得攻击方法可以在两种目标检测方法上都奏效,所以就说是可迁移的。

具体如何呢?我们一一道来~~

1. 前情提要

众所周知,当前的目标检测模型有两类:proposal based models and regression based mod-els。其实就是一个是基于锚框,一个是直接回归。
然后作者分析了一波目前已存的针对目标检测的对抗样本攻击方法,大部分都是针对proposal-based models的:
attacking_methods

于是乎作者眼睛一转,计上心来:
  不管你哪种方法,你总要有 feature map 的吧?那我把 feature map 也给攻击了,岂不就是一个大一统的攻击方法了?
好的,上面这句话就是全文的 文眼 了,下面我们看作者究竟使些什么手段。

2. UEA(Unified and Efficient Adversary)

怎么样,光看这个 UEA 的名字是不是也觉得很像大一统的意思?野心很大啊~~
模型框架结构如下:
UEA_framework

具体来说,就是用 条件GAN(conditional GAN)来生成对抗样本,不过在其上多加了几个损失函数来监督生成器的生成效果。
第一个当然就是 LcGANL_{cGAN}

LcGAN(G,D)=EI[logD(I)]+EI[log(1D(G(I)))]L_{cGAN}(G,D) = E_I[logD(I)]+E_I[log(1-D(G(I)))]

然后加了个L2L_2 loss:

LL2(G)=EI[IG(I)2]L_{L_2}(G) = E_I[||I-G(I)||_2]

当然,只有这两个的话,就只是个单纯的复制网络了,肯定不行,还加了个 Adversarial examples for semantic segmentation and object detection
里用的 misclassify loss

LDAG(G)=EI[n=1N[fln(X,tn)fl^n(X,tn)]L_{DAG}(G) = E_I[\sum_{n=1}^N[f_{l_n}(X,t_n) - f_{\hat{l}_n}(X,t_n)]

式中,XX 就是 feature mapτ=t1,t2,...,tN\tau = {t_1, t_2, ..., t_N}XX 上的 proposal regions,阈值为 0.7lnl_ntnt_n
ground-truth label, l^n\hat{l}_n 是从其他错误 labels 里随机取样的错误 label,fln(X,tn)RCf_{l_n}(X,t_n)\in\mathbb{R}^{C}
则指 tnt_nclassification score vector (before softmax normalization)
说到这里,如果你还没被绕晕的话,就会发现这个 misclassify loss 仅仅是针对 proposal based models 的,那前面说的针对 feature map 的攻击怎么实现的呢?
这就是下面这个 multi-scale attention feature loss 了:

LFea(G)=E[m=1MAm(XmRm)2]L_{Fea}(G) = E_[\sum_{m=1}^M||A_m*(X_m-R_m)||_2]

式中,XmX_mm 层的 feature mapRmR_m 是随机定义的一个 feature map, AmA_m 是所谓的 attention weight
于是乎,这最后一个 multi-scale attention feature loss 就实现了作者所说的 Unified and Efficient Adversary 了。

于是乎,最终的损失函数为:

L=LcGAN+αLL2+βLDAG+ϵLFeaL= L_{cGAN} + \alpha L_{L_2} + \beta L_{DAG} + \epsilon L_{Fea}

不消说,α,β,ϵ\alpha, \beta, \epsilon是权重系数,α=0.05\alpha =0.05, β=1\beta =1, ϵ={1104,2104}\epsilon = \left \{ 1*10^{-4}, 2*10^{-4} \right \} .

3. 大功告成

最后就是些对比图了,可想而知,作者用的生成模型,那么对抗样本的生成时间自然大大缩短;
同时又把 feature map 给改了,自然对两种检测模型都能奏效。
放两张图:

table
qualitative_results

好啦,想看更多的图,敬请前往原 paper 观看~~

微信公众号:璇珠杂俎(也可搜索 oukohou),提供本站优质非技术博文~~

wechat_official_account


regards.

oukohou.

发布了12 篇原创文章 · 获赞 46 · 访问量 7万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览