2016ccpc杭州赛 hdu 5934 K.Kingdom of Obsession


Kingdom of Obsession

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 0    Accepted Submission(s): 0


Problem Description
There is a kindom of obsession, so people in this kingdom do things very strictly.

They name themselves in integer, and there are  n  people with their id continuous  (s+1,s+2,,s+n)  standing in a line in arbitrary order, be more obsessively, people with id  x  wants to stand at  yth  position which satisfy

xmody=0


Is there any way to satisfy everyone's requirement?
 

Input
First line contains an integer  T , which indicates the number of test cases.

Every test case contains one line with two integers  n s .

Limits
1T100 .
1n109 .
0s109 .
 

Output
For every test case, you should output  'Case #x: y', where  x indicates the case number and counts from  1 and  y is the result string.

If there is any way to satisfy everyone's requirement,  y equals  'Yes', otherwise  y equals  'No'.
 

Sample Input
  
  
2 5 14 4 11
 

Sample Output
  
  
Case #1: No Case #2: Yes
 

Statistic |  Submit |  Clarifications |  Back

怎么感觉这次杭州是图论专场,居然两题涉及图论。

题意:n个人,id序号分别为是s+1到s+n,他们各自想站在第i个位置(id%i==0),问全部人能否站在想要的位置上。

思路:一看就是二分图,但数据很大不可能一一建边,然后想到了只要id里存在两个素数就不可能匹配成功,然后大概估算一下每1000个肯定有两个素数吧。然后就是暴力n^2建边,跑一遍二分图就好了。这里有个问题,区间重叠,如果重叠的话就算存在两个素数也是可以匹配了,因为可以一一对应。所以这里要特殊处理一下,区间重叠的部分默认匹配成功,剩下的部分跑二分图就好了,一开始这里没想到,一直wa。。下面给代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<queue>
#include<utility>
#include<map>
#define maxn 2005
#define inf 0x3f3f3f3f
typedef long long LL;
using namespace std;
const int mod = 1e9 + 7;
int head[maxn], vis[maxn];
bool book[maxn];
struct node{
	int v, next;
}p[maxn*maxn];
bool find(int x)
{
	for (int i = head[x]; ~i; i = p[i].next)
	{
		int y = p[i].v;
		if (!book[y])//防止同一个人被搜两次 ,不然会死循环 
		{
			book[y] = true;
			if (!vis[y] || find(vis[y]))//没人占用或者占用你的人可以找到新欢,太好了 
			{
				vis[y] = x;
				return true;
			}
		}
	}
	return false;
}
int main(){
	int t;
	scanf("%d", &t);
	for (int tcase = 1; tcase <= t; tcase++){
		memset(head, -1, sizeof(head));
		memset(vis, 0, sizeof(vis));
		int n, s, len = 0;
		scanf("%d%d", &n, &s);
		if (s + 1 <= n)
			swap(n, s);
		if (n > 1000)
			printf("Case #%d: No\n", tcase);
		else{
			for (int i = s + 1; i <= s + n; i++){
				for (int j = 1; j <= n; j++){
					if (i%j)
						continue;
					int u = i - s + 1000;
					p[len].v = j;
					p[len].next = head[u];
					head[u] = len++;
					p[len].v = u;
					p[len].next = head[j];
					head[j] = len++;
				}
			}
			int ans = 0;
			for (int i = 1; i <= n; i++)
			{
				memset(book, false, sizeof(book));//用来标记配偶是否被搜过一次 
				if (find(i))ans++;//找到配偶啦!好开心。对数++ 
			}
			if (ans == n)
				printf("Case #%d: Yes\n", tcase);
			else
				printf("Case #%d: No\n", tcase);
		}
	}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值