UVALive 3683 A Scheduling Problem(树形DP)

题目链接:点击打开链接

题目中给出了一个关键的提示:设这棵树的最长链的点个数为K的时候,答案为K或者K+1

那么可以这么考虑·;验证答案能否为K,能的话答案就是K,否则答案就为K+1。

那么问题便转换为,给那些无向边以方向,问能否使最长链的点的个数为K。

首先先预处理出最长链的点的个数K以及其中一条最长链的第一个点D。

在这里为了方便起见,人为地定义了每个点的深度d,并规定点D的深度为1,所有有向边中被指向的点的深度必定大于指向它的点的深度。

那么问题便进一步转换为,能否给树中的无向边方向使得所有的点的深度均在区间[1,K]内。

将树拉为以D为根的树,便可以进行dp了。

设dp[pos][c]为,当点pos的深度为K的时候,以点pos为根的子树能否满足条件。

状态转移也能够很容易的得到:

设pos的一个儿子为son,

如果pos指向son的话,其儿子可能的状态只有dp[son][c+j](j.>0,下同);

如果son指向pos的话,其儿子可能的状态只有dp[son][c-j];

如果pos跟son之间的连边是无向边的话,其儿子可能的状态就有dp[son][c+j]和dp[son][c-j];

当pos的儿子中有一个dp值为真的时候其dp值便为真,否则便为假。

记忆化搜索一波就可以了。

代码如下:

#include<bits/stdc++.h>
using namespace std;

struct edge
{
	int u,v;
	int w;//0:u->v 1:u--v 2:u<-v
	edge(int uu=0,int vv=0,int ww=0):u(uu),v(vv),w(ww){}
};

vector<edge> e[2005];

int MaxD[2005];

bool vis[2005][2005];
bool dp[2005][2005];

int n,K;

void input(int p)
{
	n=p;
	char s[10];
	do
	{
		n=max(n,p);
		while(scanf("%s",s)==1)
		{
			if(s[0]=='0')break;
			int pp=0;
			char c='k';
			int len=strlen(s);
			for(int i=0;i<len;i++)
			{
				if(s[i]>='0'&&s[i]<='9')
				{
					pp*=10;
					pp+=(s[i]-'0');
				}
				else c=s[i];
			}
			n=max(n,pp);
			if(c=='k')
			{
				e[p].push_back(edge(p,pp,1));
				e[pp].push_back(edge(pp,p,1));
			}
			else if(c=='d')
			{
				e[p].push_back(edge(p,pp,0));
				e[pp].push_back(edge(pp,p,2));
			}
			else
			{
				e[p].push_back(edge(p,pp,2));
				e[pp].push_back(edge(pp,p,0));
			}
		}
		scanf("%d",&p);
	}while(p!=0);
}

void Pre_dfs(int pos)
{
	if(MaxD[pos]!=-1)return;
	MaxD[pos]=1;
	for(int i=0;i<e[pos].size();i++)
	{
		edge &p=e[pos][i];
		if(p.w!=0)continue;
		Pre_dfs(p.v);
		MaxD[pos]=max(MaxD[pos],MaxD[p.v]+1);
	}
}

bool dfs(int prt,int pos,int c)
{
	if(c<1||c>K)return false;
	if(vis[pos][c])return dp[pos][c];
	vis[pos][c]=true;
	dp[pos][c]=true;
	for(int i=0;i<e[pos].size();i++)
	{
		edge &p=e[pos][i];
		if(p.v==prt)continue;
		if(p.w==0)
		{
			bool pans=false;
			for(int j=1;(!pans)&&c+j<=K;j++)
				pans=pans||dfs(pos,p.v,c+j);
			dp[pos][c]=dp[pos][c]&&pans;
		}
		else if(p.w==2)
		{
			bool pans=false;
			for(int j=1;(!pans)&&c-j>=1;j++)
				pans=pans||dfs(pos,p.v,c-j);
			dp[pos][c]=dp[pos][c]&&pans;
		}
		else
		{
			bool pans=false;
			for(int j=1;(!pans)&&c+j<=K;j++)
				pans=pans||dfs(pos,p.v,c+j);
			for(int j=1;(!pans)&&c-j>=1;j++)
				pans=pans||dfs(pos,p.v,c-j);
			dp[pos][c]=dp[pos][c]&&pans;
		}
	}
	return dp[pos][c];
}

int main()
{
	int p;
	while(scanf("%d",&p)==1&&p)
	{
		for(int i=1;i<=2000;i++)
			e[i].clear();
		input(p);
		memset(MaxD,-1,sizeof(MaxD));
		for(int i=1;i<=n;i++)
			Pre_dfs(i);
		int mx=1;
		for(int i=2;i<=n;i++)
			if(MaxD[i]>MaxD[mx])
				mx=i;
		K=MaxD[mx];
		memset(vis,0,sizeof(vis));
		if(dfs(-1,mx,1))printf("%d\n",K);
		else printf("%d\n",K+1);
	}
}


Practice 1 Date: Monday, March 18th, 2013 We highly encourage being environment friendly and trying all problems on your own. Implement exercise 2.3-7. Implement priority queue. Implement Quicksort and answer the following questions. (1) How many comparisons will Quicksort do on a list of n elements that all have the same value? (2) What are the maximum and minimum number of comparisons will Quicksort do on a list of n elements, give an instance for maximum and minimum case respectively. Give a divide and conquer algorithm for the following problem: you are given two sorted lists of size m and n, and are allowed unit time access to the ith element of each list. Give an O(lg m + lgn) time algorithm for computing the kth largest element in the union of the two lists. (For simplicity, you can assume that the elements of the two lists are distinct). Practice 2 Date: Monday, April 1st, 2013 We highly encourage being environment friendly and trying all problems on your own. Matrix-chain product. The following are some instances. Longest Common Subsequence (LCS). The following are some instances. X: xzyzzyx Y: zxyyzxz X:MAEEEVAKLEKHLMLLRQEYVKLQKKLAETEKRCALLAAQANKESSSESFISRLLAIVAD Y:MAEEEVAKLEKHLMLLRQEYVKLQKKLAETEKRCTLLAAQANKENSNESFISRLLAIVAG Longest Common Substring. The following are some instances. X: xzyzzyx Y: zxyyzxz X:MAEEEVAKLEKHLMLLRQEYVKLQKKLAETEKRCALLAAQANKESSSESFISRLLAIVAD Y:MAEEEVAKLEKHLMLLRQEYVKLQKKLAETEKRCTLLAAQANKENSNESFISRLLAIVAG Max Sum. The following is an instance. (-2,11,-4,13,-5,-2) Shortest path in multistage graphs. Find the shortest path from 0 to 15 for the following graph.   A multistage graph is a graph (1) G=(V,E) with V partitioned into K >= 2 disjoint subsets such that if (a,b) is in E, then a is in Vi , and b is in Vi+1 for some subsets in the partition; and (2) | V1 | = | VK | = 1.     Practice 3 Date: Monday, April 15th, 2013 We highly encourage being environment friendly and trying all problems on your own. Knapsack Problem. There are 5 items that have a value and weight list below, the knapsack can contain at most 100 Lbs. Solve the problem both as fractional knapsack and 0/1 knapsack. A simple scheduling problem. We are given jobs j1, j2… jn, all with known running times t1, t2… tn, respectively. We have a single processor. What is the best way to schedule these jobs in order to minimize the average completion time. Assume that it is a nonpreemptive scheduling: once a job is started, it must run to completion. The following is an instance. (j1, j2, j3, j4) : (15,8,3,10) Single-source shortest paths. The following is the adjacency matrix, vertex A is the source.  A B C D E A -1 3 B 3 2 2 C D 1 5 E -3 All-pairs shortest paths. The adjacency matrix is as same as that of problem 3.(Use Floyd or Johnson’s algorithm)     Practice 4 Date: Monday, May 8th, 2013 We highly encourage being environment friendly and trying all problems on your own. 0/1 Knapsack Problem. There are 5 items that have a value and weight list below, the knapsack can contain at most 100 Lbs. Solve the problem using back-tracking algorithm and try to draw the tree generated. Solve the 8-Queen problem using back-tracking algorithm.    
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值