seq2seq与end2end的区别

end2end:
(1)end2end models:输入端和输出端由一个神经网络连接
缺点:难训练,对数据分布做了独立性假设。
(2)end2end training:训练好语言模型后,再将声学模型和语言模型连接训练。

seq2seq:
是一个Encoder-Decoder结构,在网络中的变化:可变长信号(input)——>定长向量——>可变长信号(output)

传统NLP方法主要使用规则和统计学习方法来处理自然语言文本,例如基于n-gram的语言模型、基于HMM的分词和词性标注算法等。这些方法需要手动设计特征和规则,并且通常难以处理长文本和复杂语法。 End-to-End Seq2Seq模型是一种基于神经网络的序列到序列模型,可以将一个序列映射为另一个序列。它广泛用于机器翻译、文本摘要、对话系统等任务。它通常由两个循环神经网络(RNN)组成,一个编码器将输入序列编码为固定长度的向量,另一个解码器将此向量解码为输出序列。 Encoder-Decoder模型也是一种基于神经网络的序列到序列模型,它Seq2Seq模型类似,但它通常使用卷积神经网络(CNN)或递归神经网络(RNN)作为编码器和解码器。它常用于机器翻译、语音识别等任务。 Transformer模型是一种基于自注意力机制的神经网络模型,它可以在不使用RNN和CNN的情况下捕捉序列中的长期依赖关系。它广泛用于机器翻译、文本摘要、问答系统等任务,例如Google的翻译系统就是基于Transformer模型实现的。 BERT模型(Bidirectional Encoder Representations from Transformers)是一种基于Transformer模型的预训练语言模型,它可以在大规模无标注文本上进行预训练,然后在少量标注数据上进行微调,用于各种自然语言处理任务,例如文本分类、命名实体识别、机器翻译等。 GPT模型(Generative Pre-training Transformer)也是一种基于Transformer模型的预训练语言模型,它可以在大规模无标注文本上进行预训练,然后在特定的任务上进行微调,例如文本生成、对话系统等。BERT不同的是,GPT是一个单向的语言模型,只能生成单向的文本。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我是小蔡呀~~~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值