最近,AI圈子里最火的概念非COT莫属了。从OpenAI的O1模型发布开始,COT就成为了各大科技媒体和AI爱好者热议的话题。那么,COT到底是什么?它为何能引发如此广泛的关注?
COT,全称Chain of Thought,中文译为“思维链”。 它并非一个全新的概念,早在2022年,谷歌的研究人员就提出了COT的概念,并将其应用于自然语言处理领域。然而,真正让COT名声大噪的,还要归功于OpenAI的O1模型。
那么,COT究竟有何神奇之处?
简单来说,COT是一种模拟人类思维过程的技术。传统的AI模型,例如GPT-3,在处理问题时,通常是直接给出一个答案。而COT则不同,它会在给出最终答案之前,先进行一系列的推理步骤,就像人类在解决问题时会一步步思考一样。
举个例子,当我们问AI“为什么天空是蓝色的?”传统的AI模型可能会直接回答“因为瑞利散射”。而COT模型则会先解释什么是瑞利散射,然后说明瑞利散射如何导致天空呈现蓝色,最后再给出答案。
COT的优势显而易见:
提高答案的准确性: 通过一步步推理,COT可以更准确地理解问题的本质,从而给出更可靠的答案。
增强解释性: COT的推理过程清晰可见,可以帮助用户更好地理解答案背后的逻辑。
促进人机交互: COT的推理过程类似于人类的思考方式,可以增强用户与AI之间的互动体验。
我们可以从github项目g1窥视COT,通过提示工程完成COT后让我们从模型得到的答案更准确。
提示词:
**
你是一个能够逐步解释推理过程的专家AI助手。对于每一步,提供一个描述你在该步骤中所做内容的标题,以及相应的内容。决定是否需要另一步骤或你已准备好给出最终答案,但一次推理仅执行一步。以JSON格式响应,包含 ‘title’, ‘content’, 和 ‘next_action’(要么是 ‘continue’,要么是 ‘final_answer’)键值。
为了提高指令遵从性,通过大写字母强调指令的重要性,包括一组提示和最佳实践:
1、尽可能多地使用推理步骤。至少3步。这确保了语言模型实际上有时间首先思考,通常结果在大约5-10步之间,注意每次仅执行一步,我提到继续你才能执行下一步。
2、意识到作为语言模型你的限制以及你能做什么和不能做什么。这有助于语言模型记得使用更好的结果技巧,比如在计数前将“strawberry”拆分成单个字母。
3、包括探索替代答案。考虑你可能是错误的,如果你的推理是错误的,错误可能在哪里。这是从语言模型重新评估其最初响应以确保其逻辑上与问题对齐中获得的重大部分收益。
4、当你说你在重新检查时,实际上要重新检查,并采用另一种方法来做。不要只是说你在重新检查。这鼓励了防止语言模型只是说它重新检查了一个问题而实际上没有尝试新的方法。
5、至少使用3种方法得出答案。这有助于语言模型通过尝试多种方法来得出正确的答案。
6、使用最佳实践。这就像是改善语言模型代码输出的“做得更好”的提示一样简单。通过告诉语言模型使用最佳实践或做得更好,它通常会表现得更好!
问题如下:
**
为了看到效果我们上一个之前难倒众多模型的问题,数strawberry中有几个"r",我们用qwen2:72B来做测试。
使用前,回答的是一个:
用后,回答的是三个:
很明显在遇到某些模型原来不可解决的问题时,COT可以解决,它使模型做到像人类一样一步一步思考,并给出合理的解释,降低错误率。
也就是说如果之后我们遇到复杂的任务,模型一次性解决不了,我们可以尝试使用COT去进行解决,尤其是复杂的意图识别、推理、数学计算等问题,可以大幅提升模型能力。