非负矩阵分解小白入门

非负矩阵分解

一、定义

非负矩阵分解(Nonnegative Matrix Factorization),简称NMF。顾名思义就是,将非负的大矩阵分解成两个非负的小矩阵。它使分解后的所有分量均为非负值(要求纯加性的描述),并且同时实现非线性的维数约减。
在这里插入图片描述
R n R^n Rn空间分布的一堆数据有它们分布的某些规律,那么找一组更能直观反映这种规律的基,再把原来的数据投影到这组基上表示,这样就能便于后续的应用,比如分类等。

上式 V V V是一个 n ∗ m n*m nm维的矩阵,其中每一列就是 R n R^n Rn空间中的一个向量,共 m m m个向量; W W W是一个 n ∗ k n*k nk维的矩阵,即 k k k个基; H H H k ∗ m k*m km的矩阵,每一列为 V V V投影到 W W W上得到的向量。
在这里插入图片描述
理解:原始矩阵 V V V的列向量是对左矩阵 W W W中所有列向量的加权和,而权重系数就是又矩阵对应列向量的元素,故称 W W W为基矩阵, H H H为系数矩阵。一般情况下 k k k ( W W W矩阵的列数) 的选择要比 N N N小,满足 ( F + N ) k < F N (F+N)k<FN (F+N)k<FN,这时用系数矩阵代替原始矩阵,就可以实现对原始矩阵进行降维,得到数据特征的降维矩阵,从而减少存储空间,减少计算机资源。

原矩阵 V V V中的一列向量可以解释为对左矩阵 W W W中所有列向量(称为基向量)的加权和,而权重系数为右矩阵H中对应列向量中的元素。这种基于基向量组合的表示形式具有很直观的语义解释,它反映了人类思维中“局部构成整体”的概念。

原矩阵V第2行第4列的红色三角形是由矩阵W的第2行与矩阵H的第4列相乘的结果!

二、几种矩阵分解方法的效果差异

其中original原图即为 V V V中的一列;等式左边第一块是 W W W,其中的每一小块是 W W W的一列;等式左边第二块是 H H H的一列;等式右边的图像是左边相乘还原得到的与original相对应的一个向量(只不过显示成二维图像)。
在这里插入图片描述
VQ的约束是要求H的每一列只有一个元素为1,其它为0,因此相当于将m个数据归纳成了 k k k个代表,原数据映射过去就是取 k k k个基当中与原向量距离最小的来重新表示。所以VQ的基都是一张张完整正常的脸,它们都是最具代表性的脸。

PCA大家用得比较多,就是求一组标准正交基,第一个基的方向取原数据方差最大的方向,然后第二个基在与第一个基正交的所有方向里再取方差最大的,这样在跟前面的基都正交的方向上一直取到k个基。所以PCA的基没有直观的物理意义,而且W和H里面的元素都是可正可负的,这就意味着还原时是用W的基加加减减得到的。

NMF因为约束了非负,所以只准把基相加,不能相减,这就意味着基与基是通过拼接组合来还原原象的。所以我们可以看到NMF的每个基实际上在表示着脸部的某个部件,这种性质在许多场景上就有了它特有的用处了。

理解如下

VQ其实就像kmeans,它的基都落在原数据的最具代表性的位置上。

PCA的基则是指向四面八方的,相互正交着。

NMF的原数据首先就是只分布在非负子空间里面的,然后它的基则在这个非负子空间靠近边缘的区域,像一组长短不一、间隔不一的伞骨。
在这里插入图片描述

三、大众例子

矩阵分解的想法源于我们相信每个电影都是由某些元素组成的,而这些元素到底是什么,有多少,我们是不知道的。而不同的用户出于个人喜好一定会对这些元素有个评价。
比如:
一个电影里如果只考虑爱情和动作两个因素。一个用户也一定会有我给爱情打分多一点还是喜欢动作多一点。
在这里插入图片描述
期望就是我们已知下面的矩阵,而期望分解出比较合理的上面两个矩阵。这样就可以用来预测别的用户对别的电影的看法了。

四、实验验证

clear all;
close all;
clc;
V=double(imread('lena.jpg'));
imshow(mat2gray(V));
[i u]=size(V);                                    % 计算V的规格
r=100;                                            % 设置分解矩阵的秩
W=rand(i,r);                                      % 初始化WH,为非负数
H=rand(r,u);
maviter=100;                                      % 最大迭代次数
for iter=1:maviter
    W=W.*((V./(W*H))*H');                         % 注意这里的三个公式和文中的是对应的
    W=W./(ones(i,1)*sum(W));    
    H=H.*(W'*(V./(W*H)));
end
img_V=W*H;
figure;
imshow(mat2gray(img_V));

原图
在这里插入图片描述
重构
在这里插入图片描述
注: 本文仅供作者学习和参考,如何任何问题,欢迎批评指正~

  • 3
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
非负矩阵分解(Non-negative Matrix Factorization,NMF)是一种在机器学习和数据挖掘领域广泛应用的算法。其核心思想是将一个非负矩阵分解为两个非负的低秩矩阵的乘积,从而发现原始矩阵的潜在结构和特征。 在MATLAB中,可以通过调用内置函数或开源工具箱来实现非负矩阵分解。一种常用的方法是使用MATLAB自带的函数`nnmf`。这个函数可以通过多种不同的算法实现非负矩阵分解,如乘法更新法、反射法等。 使用`nnmf`函数可以指定要分解的原始矩阵以及分解后的矩阵的秩。此外,还可以选择不同的代价函数和优化算法以获得更好的分解结果。函数的输出为分解后的两个非负矩阵及相应的误差。 除了`nnmf`函数外,MATLAB中还有其他一些工具箱和函数可以实现非负矩阵分解,如NMF_ARD、NMF库等。这些工具箱和函数提供了更多的参数选项和算法选择,可以根据实际需求进行调整和优化。 在使用非负矩阵分解时,需要注意选择合适的参数和算法,以及对分解结果进行合理的解释和应用。同时,也要注意数据的预处理和归一化,以提高非负矩阵分解的效果和可解释性。 总之,MATLAB提供了多种实现非负矩阵分解的函数和工具箱,可以根据需求选择合适的方法进行分解和应用。非负矩阵分解在机器学习、图像处理、文本挖掘等领域有广泛的应用前景。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ru-willow

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值