一、层次分析法
描述:
建模比赛中最基础的模型之一,主要用于解决评价类问题。
1、一致矩阵的特点:隔行(各列)之间成倍数关系;
2、正互反矩阵:矩阵中Aij >0 ,且满足Aij × Aji = 1,则称该矩阵为正互反矩阵
3、一致矩阵:在层次分析法中,我们构造的判断矩阵为正互反矩阵,若正互反矩阵满足Aij × Ajk = Aik,则称为一致矩阵,***要注意的是***在使用矩阵求权重之前,必须对其进行一致性检验。
4、引理:
举一个3*3判断矩阵的例子
判断矩阵越不一致时,最大特征值与N相差的就越大(检验时就是看最大特征值和N相差的有多大)
5、一致性检验的步骤(允许不一致,但是要确定不一致的允许范围)
1)、计算一致性指标 (其中rmax为判断矩阵的最大特征值)
2)、查找相对应的平均随机一致性指标RI(在实际运用中,N很少超出10,如果指标的个数大于10,则可以考虑建立二级随机指标体系)
3)、计算 一致性比例CR = CI/RI
判断标准:
如果CR <0.1,则可以认为判断矩阵的 一致性可以接受;CR >=0