CVPR 2024 - Rethinking the Evaluation Protocol of Domain Generalization

本文探讨了领域泛化评估中的问题,提出使用自监督预训练和随机权重初始化以减少信息泄露,并对现有算法进行了重新评估,引入新的测试基准,旨在提升评估的公平性和准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CVPR 2024 - Rethinking the Evaluation Protocol of Domain Generalization

在这里插入图片描述

这篇文章主要讨论了领域泛化评估协议的重新思考,特别是如何处理可能存在的测试数据信息泄露风险。作者首先指出,当前的领域泛化评估协议可能存在问题,可能导致测试数据信息泄露,进而影响评估的公平性和准确性。为了解决这个问题,作者提出了两个建议:

  • 一是建议领域泛化算法在进行比较和评估时应采用自监督预训练权重或随机权重作为初始化;
  • 二是建议对每个训练模型在多个测试域上进行评估。

作者还根据这些建议重新评估了十个代表性的领域泛化算法,并提供了三个新的测试leaderboard。这些更改和新的测试leaderboard将鼓励未来的研究,并促进领域泛化的更准确评估。

### 关于CVPR 2024会议中的EMCAD主题 CVPR计算机视觉和模式识别会议)主要关注计算机视觉及其应用领域,而EMCAD(电磁兼容性和天线设计)通常属于电气工程范畴。因此,在CVPR会议上专门针对EMCAD的主题较少见[^1]。 然而,随着技术的发展,交叉学科的研究逐渐增多。某些涉及图像处理、传感器融合以及无线通信的技术可能间接关联到EMCAD方面的工作。例如: - **多模态感知**:利用不同类型的传感器获取环境信息,其中一些传感器可能会涉及到射频信号的接收与发射,进而牵涉到电磁兼容性问题。 - **自动驾驶车辆**:这类研究不仅依赖摄像头等光学设备,还需要雷达和其他基于无线电波的探测手段,这些都离不开良好的电磁兼容设计来确保系统的稳定运行。 对于希望了解更具体的EMCAD相关内容,建议查阅IEEE Transactions on Electromagnetic Compatibility 或者Antennas and Propagation Society International Symposium (APSURSI)等相关专业期刊和会议论文集,因为这些都是专注于电磁学及天线设计的专业出版物[^3]。 如果确实存在对CVPR中有关联性的特定话题感兴趣的情况,则可以考虑探索如下方向: - 结合机器学习算法优化天线阵列的设计参数; - 利用电磁仿真数据训练神经网络模型预测干扰源位置或强度分布; ```python # 示例代码展示如何通过Python调用API查询学术文献数据库 import requests def search_papers(keyword, year=2024): url = f"https://api.example.com/paper?query={keyword}&year={year}" response = requests.get(url) return response.json() papers = search_papers('EMCAD CVPR') print(papers) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值