CVPR 2024 - Rethinking the Evaluation Protocol of Domain Generalization

本文探讨了领域泛化评估中的问题,提出使用自监督预训练和随机权重初始化以减少信息泄露,并对现有算法进行了重新评估,引入新的测试基准,旨在提升评估的公平性和准确性。
摘要由CSDN通过智能技术生成

CVPR 2024 - Rethinking the Evaluation Protocol of Domain Generalization

在这里插入图片描述

这篇文章主要讨论了领域泛化评估协议的重新思考,特别是如何处理可能存在的测试数据信息泄露风险。作者首先指出,当前的领域泛化评估协议可能存在问题,可能导致测试数据信息泄露,进而影响评估的公平性和准确性。为了解决这个问题,作者提出了两个建议:

  • 一是建议领域泛化算法在进行比较和评估时应采用自监督预训练权重或随机权重作为初始化;
  • 二是建议对每个训练模型在多个测试域上进行评估。

作者还根据这些建议重新评估了十个代表性的领域泛化算法,并提供了三个新的测试leaderboard。这些更改和新的测试leaderboard将鼓励未来的研究,并促进领域泛化的更准确评估。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值