书生·浦语第二期实战营(初夏专场)-笔记7

书生·浦语第二期实战营(初夏专场)-笔记7

OpenCompass 大模型评测实战

如何评测大模型

主客观评测

OpenCompass 采取客观评测与主观评测相结合的方法。针对具有确定性答案的能力维度和场景,通过构造丰富完善的评测集,对模型能力进行综合评价。针对体现模型能力的开放式或半开放式的问题、模型安全问题等,采用主客观相结合的评测方式。

长文本评测

全栈工具链

行业生态社区

在 OpenCompass 中评估一个模型通常包括以下几个阶段:配置 -> 推理 -> 评估 -> 可视化。

  • 配置:这是整个工作流的起点。您需要配置整个评估过程,选择要评估的模型和数据集。此外,还可以选择评估策略、计算后端等,并定义显示结果的方式。
  • 推理与评估:在这个阶段,OpenCompass 将会开始对模型和数据集进行并行推理和评估。推理阶段主要是让模型从数据集产生输出,而评估阶段则是衡量这些输出与标准答案的匹配程度。这两个过程会被拆分为多个同时运行的“任务”以提高效率,但请注意,如果计算资源有限,这种策略可能会使评测变得更慢。如果需要了解该问题及解决方案,可以参考 FAQ: 效率。
  • 可视化:评估完成后,OpenCompass 将结果整理成易读的表格,并将其保存为 CSV 和 TXT 文件。你也可以激活飞书状态上报功能,此后可以在飞书客户端中及时获得评测状态报告。 接下来,我们将展示 OpenCompass 的基础用法,展示书生浦语在 C-Eval​ 基准任务上的评估。它们的配置文件可以在 configs/eval_demo.py​ 中找到。

启动评测

面向GPU的环境安装

studio-conda -o internlm-base -t opencompass
source activate opencompass
git clone -b 0.2.4 https://github.com/open-compass/opencompass
cd opencompass
pip install -e .

如果pip install -e .安装未成功,请运行:

pip install -r requirements.txt

数据准备

解压评测数据集到 data/ 处

cp /share/temp/datasets/OpenCompassData-core-20231110.zip /root/opencompass/
unzip OpenCompassData-core-20231110.zip

将会在 OpenCompass 下看到data文件夹

查看支持的数据集和模型

列出所有跟 InternLM 及 C-Eval 相关的配置

python tools/list_configs.py internlm ceval

将会看到

运行评测

确保按照上述步骤正确安装 OpenCompass 并准备好数据集后,可以通过以下命令评测 InternLM2-Chat-1.8B 模型在 C-Eval 数据集上的性能。由于 OpenCompass 默认并行启动评估过程,我们可以在第一次运行时以 --debug 模式启动评估,并检查是否存在问题。在 --debug 模式下,任务将按顺序执行,并实时打印输出。

python run.py --datasets ceval_gen --hf-path /share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b --tokenizer-path /share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b --tokenizer-kwargs padding_side='left' truncation='left' trust_remote_code=True --model-kwargs trust_remote_code=True device_map='auto' --max-seq-len 1024 --max-out-len 16 --batch-size 2 --num-gpus 1 --debug

命令解析

python run.py
--datasets ceval_gen \
--hf-path /share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b \  # HuggingFace 模型路径
--tokenizer-path /share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b \  # HuggingFace tokenizer 路径(如果与模型路径相同,可以省略)
--tokenizer-kwargs padding_side='left' truncation='left' trust_remote_code=True \  # 构建 tokenizer 的参数
--model-kwargs device_map='auto' trust_remote_code=True \  # 构建模型的参数
--max-seq-len 1024 \  # 模型可以接受的最大序列长度
--max-out-len 16 \  # 生成的最大 token 数
--batch-size 2  \  # 批量大小
--num-gpus 1  # 运行模型所需的 GPU 数量
--debug

遇到错误mkl-service + Intel(R) MKL MKL_THREADING_LAYER=INTEL is incompatible with libgomp.so.1 ... 解决方案:

export MKL_SERVICE_FORCE_INTEL=1
#或
export MKL_THREADING_LAYER=GNU

如果一切正常,您应该看到屏幕上显示 “Starting inference process”:

[2024-03-18 12:39:54,972] [opencompass.openicl.icl_inferencer.icl_gen_inferencer] [INFO] Starting inference process...

评测完成后,将会看到:

自定义数据集客主观评测:量身定制,慧眼识珠

自建客观数据集步骤

详细的客观评测指引参见 https://opencompass.readthedocs.io/zh-cn/latest/advanced_guides/new_dataset.html

主观评测简介

由于客观评测只能反映模型在一些性能数据上的指标,没法完全真实地反映模型在与人类对话时的表现,因此需要在真实的对话场景下通过主观评测的方式翻译模型的真实性能。 而由于完全靠人力来进行主观评测是费时费力的,因此有很多利用模型来进行主观评测的方式。 这些方式主要可以分为以下几类:打分,对战,多模型评测等。

自建主观数据集步骤

详细的主观评测指引参见 https://opencompass.readthedocs.io/zh-cn/latest/advanced_guides/subjective_evaluation.html

数据污染评估:禁止作弊,诚信考试

数据污染评估简介

数据污染 是指本应用在下游测试任务中的数据出现在了大语言模型 (LLM) 的训练数据中,从而导致在下游任务 (例如,摘要、自然语言推理、文本分类) 上指标虚高,无法反映模型真实泛化能力的现象。 由于数据污染的源头是出现在 LLM 所用的训练数据中,因此最直接的检测数据污染的方法就是将测试数据与训练数据进行碰撞,然后汇报两者之间有多少语料是重叠出现的,经典的 GPT-3 论文中的表 C.1 会报告了相关内容。 但如今开源社区往往只会公开模型参数而非训练数据集,在此种情况下 如何判断是否存在数据污染问题或污染程度如何,这些问题还没有被广泛接受的解决方案。OpenCompass 提供了两种可能的解决方案。

实验评估步骤

https://opencompass-cn.readthedocs.io/zh-cn/latest/advanced_guides/contamination_eval.html

大海捞针:星辰藏海深,字海寻珠难

大海捞针测试简介

大海捞针测试(灵感来自 NeedleInAHaystack)是指通过将关键信息随机插入一段长文本的不同位置,形成大语言模型 (LLM) 的Prompt,通过测试大模型是否能从长文本中提取出关键信息,从而测试大模型的长文本信息提取能力的一种方法,可反映LLM长文本理解的基本能力。

数据集介绍

Skywork/ChineseDomainModelingEval 数据集收录了 2023 年 9 月至 10 月期间发布的高质量中文文章,涵盖了多个领域。这些文章确保了公平且具有挑战性的基准测试。 该数据集包括特定领域的文件:

  • zh_finance.jsonl 金融
  • zh_game.jsonl 游戏
  • zh_government.jsonl 政务
  • zh_movie.jsonl 电影
  • zh_tech.jsonl 技术
  • zh_general.jsonl 综合

这些文件用于评估LLM对不同特定领域的理解能力。

实验评估步骤

https://opencompass.readthedocs.io/zh-cn/latest/advanced_guides/needleinahaystack_eval.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值