AAAI论文最佳解读|SAVSR Arbitrary-Scale Video Super-Resolution via a Learned Scale-Adaptive Network

论文标题

SAVSR: Arbitrary-Scale Video Super-Resolution via a Learned Scale-Adaptive Network SAVSR:基于学习尺度自适应网络的任意尺度视频超分辨率

论文链接

SAVSR: Arbitrary-Scale Video Super-Resolution via a Learned Scale-Adaptive Network论文下载

论文作者

Zekun Li, Hongying Liu, Fanhua Shang, Yuanyuan Liu, Liang Wan, Wei Feng

内容简介

本文提出了一种新颖的任意尺度视频超分辨率网络(SAVSR),旨在解决现有视频超分辨率(VSR)网络仅支持固定整数倍超分辨率任务的问题。SAVSR是首个关注包括非整数和非对称尺度的空间VSR的工作。该网络引入了全维尺度注意力卷积(OSConv),根据输入的尺度动态调整,以提取更强的帧间特征。此外,提出的时空自适应任意尺度上采样(STAU)模块结合了时间特征和尺度信息,提升了VSR任务的表现。通过在多个基准数据集上的实验,SAVSR在非整数和非对称尺度上超越了最先进的方法,展示了其优越的性能和广泛的应用潜力。
在这里插入图片描述

分点关键点

  1. SAVSR网络架构

    • SAVSR采用迭代双向架构(IBA),通过输入多个连续的低分辨率帧和请求的尺度因子,输出超分辨率中间帧。该架构结合了迭代和循环架构的优点,能够有效提取时间信息并进行隐式对齐。
      在这里插入图片描述
  2. 全维尺度注意力卷积(OSConv)

    • OSConv根据当前尺度因子自适应地修改卷积核的权重,利用尺度信息增强特征表示能力。该方法通过多层感知器(MLP)生成尺度特征向量,从而实现对卷积核的动态调整。
  3. 时空自适应任意尺度上采样(STAU)

    • STAU模块通过生成时空滤波器和尺度滤波器,结合隐式对齐特征进行自适应卷积。该模块能够在上采样过程中保持时空相关性,提升超分辨率效果。
  4. 实验结果与性能评估

    • 在Vimeo-90K、Vid4和UDM10等基准数据集上的实验表明,SAVSR在非整数和非对称尺度上表现优异,且在常见整数尺度上也具有竞争力,展示了其广泛的应用潜力。
      在这里插入图片描述

论文代码

代码链接:https://github.com/Weepingchestnut/SAVSR

中文关键词

  1. 视频超分辨率
  2. 任意尺度
  3. 深度学习
  4. 尺度自适应网络
  5. 时空特征
  6. 特征对齐

AAAI论文合集:

AAAI论文合集

希望这些论文能帮到你!如果觉得有用,记得点赞关注哦~ 后续还会更新更多论文合集!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值