论文标题
SAVSR: Arbitrary-Scale Video Super-Resolution via a Learned Scale-Adaptive Network SAVSR:基于学习尺度自适应网络的任意尺度视频超分辨率
论文链接
SAVSR: Arbitrary-Scale Video Super-Resolution via a Learned Scale-Adaptive Network论文下载
论文作者
Zekun Li, Hongying Liu, Fanhua Shang, Yuanyuan Liu, Liang Wan, Wei Feng
内容简介
本文提出了一种新颖的任意尺度视频超分辨率网络(SAVSR),旨在解决现有视频超分辨率(VSR)网络仅支持固定整数倍超分辨率任务的问题。SAVSR是首个关注包括非整数和非对称尺度的空间VSR的工作。该网络引入了全维尺度注意力卷积(OSConv),根据输入的尺度动态调整,以提取更强的帧间特征。此外,提出的时空自适应任意尺度上采样(STAU)模块结合了时间特征和尺度信息,提升了VSR任务的表现。通过在多个基准数据集上的实验,SAVSR在非整数和非对称尺度上超越了最先进的方法,展示了其优越的性能和广泛的应用潜力。
分点关键点
-
SAVSR网络架构
- SAVSR采用迭代双向架构(IBA),通过输入多个连续的低分辨率帧和请求的尺度因子,输出超分辨率中间帧。该架构结合了迭代和循环架构的优点,能够有效提取时间信息并进行隐式对齐。
- SAVSR采用迭代双向架构(IBA),通过输入多个连续的低分辨率帧和请求的尺度因子,输出超分辨率中间帧。该架构结合了迭代和循环架构的优点,能够有效提取时间信息并进行隐式对齐。
-
全维尺度注意力卷积(OSConv)
- OSConv根据当前尺度因子自适应地修改卷积核的权重,利用尺度信息增强特征表示能力。该方法通过多层感知器(MLP)生成尺度特征向量,从而实现对卷积核的动态调整。
-
时空自适应任意尺度上采样(STAU)
- STAU模块通过生成时空滤波器和尺度滤波器,结合隐式对齐特征进行自适应卷积。该模块能够在上采样过程中保持时空相关性,提升超分辨率效果。
-
实验结果与性能评估
- 在Vimeo-90K、Vid4和UDM10等基准数据集上的实验表明,SAVSR在非整数和非对称尺度上表现优异,且在常见整数尺度上也具有竞争力,展示了其广泛的应用潜力。
- 在Vimeo-90K、Vid4和UDM10等基准数据集上的实验表明,SAVSR在非整数和非对称尺度上表现优异,且在常见整数尺度上也具有竞争力,展示了其广泛的应用潜力。
论文代码
代码链接:https://github.com/Weepingchestnut/SAVSR
中文关键词
- 视频超分辨率
- 任意尺度
- 深度学习
- 尺度自适应网络
- 时空特征
- 特征对齐
AAAI论文合集:
希望这些论文能帮到你!如果觉得有用,记得点赞关注哦~ 后续还会更新更多论文合集!!