机器学习(1)——常用术语
欠拟合:模型假设太严格(可用特征少),所以模型不能拟合到实际数据
解决方案:使用更多的特征有利于拟合,选用一个学习能力更好的拟合算法
过拟合:算法不仅学习了数据,而且吧噪声也当做信号学习,这样算法推广能力差
解决方案:增加训练数据量可使得拟合曲线更光滑,减少特征数量降低过拟合程度,使用学习能力差的算法。
欠拟合:模型假设太严格(可用特征少),所以模型不能拟合到实际数据
解决方案:使用更多的特征有利于拟合,选用一个学习能力更好的拟合算法
过拟合:算法不仅学习了数据,而且吧噪声也当做信号学习,这样算法推广能力差
解决方案:增加训练数据量可使得拟合曲线更光滑,减少特征数量降低过拟合程度,使用学习能力差的算法。