机器学习(1)——常用术语

机器学习(1)——常用术语


欠拟合:模型假设太严格(可用特征少),所以模型不能拟合到实际数据

解决方案:使用更多的特征有利于拟合,选用一个学习能力更好的拟合算法




 

过拟合:算法不仅学习了数据,而且吧噪声也当做信号学习,这样算法推广能力差

解决方案:增加训练数据量可使得拟合曲线更光滑,减少特征数量降低过拟合程度,使用学习能力差的算法。




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值