学习笔记(21):第一章:推荐系统架构与机器学习基础理论-信息熵与基尼指数衡量覆盖率

研发管理 专栏收录该内容
25 篇文章 0 订阅

立即学习:https://edu.csdn.net/course/play/26305/327447?utm_source=blogtoedu

信息熵:度量一个事物中包括的信息量

一个事物越确定,越已知,未知就越少,它包括的信息量越少

P(i)为事件i出现的概率

n为事件总数

一个推荐系统的长尾效应越明显,其信息熵越小

基尼系数也可用来度量长尾

覆盖度:能够推荐出来的物品种类总数占总物品种类集合的比例

  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2020 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值