学习笔记(20):第一章:推荐系统架构与机器学习基础理论-RMSE与MAE评价准确度

研发管理 专栏收录该内容
25 篇文章 0 订阅

立即学习:https://edu.csdn.net/course/play/26305/327446?utm_source=blogtoedu

评价准确度:

RMSE:均方误差

MAE:平均绝对误差

T 打分集合:数量

区别:RMSE对评价指标更加苛刻,加大了预测不准对最终结果的权重,即RMSE加大了对预测不准评分的惩罚   (因为有平方项)

准确率 Precision  越接近1越好

R(u)为用户推荐的推荐列表,T(u)用户在测试集上的行为列表,真正喜好 

准确率:为用户推荐的,有多少是用户感兴趣的

召回率 Recall

召回率:用户真正感兴趣的,有多少被推荐了

二者越接近1越好,但实际上二者是有一定的矛盾的

  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值