随机变量的函数的数学期望

Y是随机变量X的函数,Y=g(X)     (g是连续函数):

X是离散型随机变量的情况

如果X是离散型随机变量,它的分布律为

P(X=x_{k})=p_{k}\; \; \; \; \; k=1,2,\cdots

如果 \sum_{k=1}^{\infty }g(x_{k})p_{k} 绝对收敛,则Y的数学期望等于:

E(Y)=E(g(X))=\sum_{k=1}^{\infty }g(x_{k})p_{k}\; \; \; \; \; \; \; (1)

X是连续型随机变量的情况

如果X是连续型随机变量,它的分布律为f(x),如果

\int_{-\infty }^{\infty }g(x)f(x)dx

绝对收敛,那么Y的数学期望等于:

E(Y)=E(g(X))=\int_{-\infty }^{\infty }g(x)f(x)dx\; \; \; \; \; \; (2)

两个或两个以上随机变量的函数的情况

Z是随机变量X,Y的函数Z=g(X,Y)   (g是连续函数),那么Z是一个一维随机变量。

若二维随机变量(X,Y)是离散型型随机变量,其分布律为

P(X=x_{i},Y=y_{j})=p_{ij},\; \; \; \; \; i,j=1,2,\cdots

那么Z的数学期望等于:

E(Z)=E(g(X,Y))=\sum_{i=1}^{\infty }\sum_{j=1}^{\infty }g(x_{i},y_{j})p_{ij}\; \; \; \; \; \; \; (3)

备注:假设上式右边的级数绝对收敛。

若二维随机变量(X,Y)是连续型型随机变量,其概率密度为f(x,y),那么Z的数学期望等于:

E(Z)=E(g(X,Y))=\int_{-\infty }^{\infty }\int_{-\infty }^{\infty }g(x,y)f(x,y)dxdy\; \; \; \; \; \; (4)

备注:假设上式右边的积分绝对收敛。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值