通义听悟携手DeepSeek-DeepSeek

将Deepseek 与通义听悟组合使用,可以快速完成音频文字提取,得到会议录音文字稿,并将文字稿转化成符合要求的会议纪要。

### 更换IDEA中的通义灵码模型为DeepSeek模型 在开发环境中更换自然语言处理(NLP)模型通常涉及几个关键步骤,具体到将IntelliJ IDEA (简称IDEA) 中使用的通义灵码模型更改为DeepSeek模型的过程如下: #### 配置环境变量与依赖项 确保项目已经配置好必要的Python版本以及虚拟环境。对于DeepSeek的支持,可能需要安装特定的库来加载和操作该模型。这可以通过`pip install transformers`命令完成,因为Hugging Face Transformers库提供了访问DeepSeek模型的能力[^2]。 #### 下载并准备DeepSeek模型 前往[HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-V3-Base)下载所需的预训练模型文件。注意保存路径以便后续引用。如果采用的是私有化部署方案,则按照官方文档指示设置相应的服务器端口和服务地址[^1]。 #### 修改代码逻辑以适应新模型 更新现有代码片段,使其能够正确调用新的NLP服务接口或本地API。假设当前应用程序通过HTTP请求向远程微服务发送文本数据获取解析结果;现在则需调整这部分实现方式,转而利用Transformers API直接实例化DeepSeek对象,并传递待分析字符串给它作为输入参数。 ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer import torch tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-V3-Base") # 加载分词器 model = AutoModelForSequenceClassification.from_pretrained("deepseek-ai/DeepSeek-V3-Base") # 初始化模型 def analyze_text(text_input): inputs = tokenizer(text_input, return_tensors="pt") outputs = model(**inputs) predictions = torch.nn.functional.softmax(outputs.logits, dim=-1) return predictions.tolist() ``` 上述脚本展示了如何使用PyTorch框架配合Transformers库快速集成DeepSeek模型入应用之中。这里创建了一个简单的函数用于接收一段文字输入并通过指定好的分类模型得到预测概率分布列表形式的结果输出。 #### 测试验证功能正常运作 最后一步是对修改后的程序进行全面测试,确认所有预期的功能都能顺利运行无误。特别要注意检查新旧两个不同版本之间是否存在性能差异或其他潜在兼容性问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值