前缀和(AcWing99)

在这里简单介绍一下前缀和的概念,并给出一道例题加以理解

前缀和

给定一个数列A,它的前缀和数列S时通过递推能求出的基本信息之一:

S[i]=\sum \limits _{j=1}^{i}A[j]

s[i]即表示从A[1]到A[i]的和。

当我们要求一个数列区间的和时,可以表示为前缀和相减的形式:

sum(l,r) = \sum\limits_{i=l}^{r}A[i] = S[r]-s[l-1]

在二维数组中,可类似地求出二维前缀和,进一步计算出二维部分和。

这里给出一道例题

激光炸弹AcWing99

这里先说明为什么要用前缀和,前缀和其实是一种提前处理数据的一种方法,在这道题中,我们必然要求出多个范围内价值的总和,此时如果直接求,那么我们需要重复多次进行大范围的累加,如果使用前缀和,我们只需要将找到需要的点的价值总和,只需要对前缀和数组某些点进行运算,能节省很多时间。

在这道题中,因为x,y都≤5000,我们可以建立一个二维数组A,其中A[i][j]就是位置[i][j]的总价值。接下来我们求出A的前缀和S,即:

S[i][j] = \sum\limits_{x=1}^{i}\sum\limits_{y=1}^{j} A[x,y]

现在我们来观察这几个式子的关系

S[i-1][j]

S[i][j-1]

S[i-1][j]+S[i][j-1]

S[i-1][j]+S[i][j-1]-S[i-1][j-1]

我们可以得到以下递推式:
S[i][j]=S[i-1][j]+S[i][j-1]-S[i-1][j-1]+A[i][j]

同理,对于任意一个边长为R的正方形,我们可以得出:
R[i][j]=S[i][j]-S[i-R][j]-S[i][j-R]+S[i-R][j-R]

因此,我们只需要求出前缀和S,然后枚举边长为R的正方形右下角坐标[i][j],就可以求出所有正方形的价值之和。

‘下面给出AC代码

#include<iostream>
#include<cmath>
using namespace std;

int s[5010][5010];
int n,r,maxx=0;

int main(){
    cin>>n>>r;
    if(r>5001)r=5001;
    int x,y,wi;
    for(int i=0;i<n;i++){
        cin>>x>>y>>wi;
        s[x+1][y+1]+=wi;
    }
    for(int i=1;i<=5001;i++){
        for(int j=1;j<=5001;j++){
            s[i][j]+=s[i-1][j]+s[i][j-1]-s[i-1][j-1];
        }
    }
    for(int i=r;i<=5001;i++){
        for(int j=r;j<=5001;j++){
            maxx=max(maxx,s[i][j]-s[i-r][j]-s[i][j-r]+s[i-r][j-r]);
        }
    }
    cout<<maxx<<endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值