在这里简单介绍一下前缀和的概念,并给出一道例题加以理解
前缀和
给定一个数列A,它的前缀和数列S时通过递推能求出的基本信息之一:
s[i]即表示从A[1]到A[i]的和。
当我们要求一个数列区间的和时,可以表示为前缀和相减的形式:
在二维数组中,可类似地求出二维前缀和,进一步计算出二维部分和。
这里给出一道例题
激光炸弹AcWing99
这里先说明为什么要用前缀和,前缀和其实是一种提前处理数据的一种方法,在这道题中,我们必然要求出多个范围内价值的总和,此时如果直接求,那么我们需要重复多次进行大范围的累加,如果使用前缀和,我们只需要将找到需要的点的价值总和,只需要对前缀和数组某些点进行运算,能节省很多时间。
在这道题中,因为x,y都≤5000,我们可以建立一个二维数组A,其中A[i][j]就是位置[i][j]的总价值。接下来我们求出A的前缀和S,即:
现在我们来观察这几个式子的关系
S[i-1][j]
S[i][j-1]
S[i-1][j]+S[i][j-1]
S[i-1][j]+S[i][j-1]-S[i-1][j-1]
我们可以得到以下递推式:
同理,对于任意一个边长为R的正方形,我们可以得出:
因此,我们只需要求出前缀和S,然后枚举边长为R的正方形右下角坐标[i][j],就可以求出所有正方形的价值之和。
‘下面给出AC代码
#include<iostream>
#include<cmath>
using namespace std;
int s[5010][5010];
int n,r,maxx=0;
int main(){
cin>>n>>r;
if(r>5001)r=5001;
int x,y,wi;
for(int i=0;i<n;i++){
cin>>x>>y>>wi;
s[x+1][y+1]+=wi;
}
for(int i=1;i<=5001;i++){
for(int j=1;j<=5001;j++){
s[i][j]+=s[i-1][j]+s[i][j-1]-s[i-1][j-1];
}
}
for(int i=r;i<=5001;i++){
for(int j=r;j<=5001;j++){
maxx=max(maxx,s[i][j]-s[i-r][j]-s[i][j-r]+s[i-r][j-r]);
}
}
cout<<maxx<<endl;
return 0;
}