梯度下降法学习及实现

##什么是梯度下降法

梯度下降法***不是一种机器学习算法,而是一种基于搜索的最优化方法。
梯度下降法的作用在于***最小化***损失函数(目标函数)
与梯度下降法相对的是***梯度上升法
,梯度上升法在于***最大化***一个效用函数(目标函数)
⋆ \star 使用梯度下降法之前,最好对数据进行归一化(正规化)处理

图解

这里写图片描述
η \eta η成为学习率(learning rate)
η \eta η的取值影响获得最优解的速度;太小,收敛速度慢,太大收敛速度快,甚至无最优解。
η \eta η取值不合理,甚至不能得到最优解
η \eta η是梯度下降法的超参数

简单梯度下降法实现

一元二次方程梯度实现求极值。

import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(-1,6,141)
y = (x-2.5)**2 -1
plt.plot(x,y )

这里写图片描述

###代码实现:

def dJ(theta):
	'''定义求导函数'''
    return 2*(theta-2.5)

def J(theta):
	'''定义损失函数'''
    return (theta-2.5)**2 -1

# 实现梯度下降搜索算法
eta = 0.1
epsilon = 1e-8
theta = 0.0
while True:
    grd = dJ(theta)
    last_theta = theta
    theta = theta - eta * grd
    if abs(J(theta) - J(last_theta)) < epsilon:
        break

print(theta)
print(J(theta))
print(dJ(theta))

⋆ \star 问题:可能得到局部最优解,而非全局最优解
解决办法:多次运行随机化初始点,初始点也是一个超参数。

实现线性回归的梯度下降法

目标函数尽可能小:
J ( θ ) = ∑ i = 1 m ( y i − y ^ i ) 2 ⇒ ∑ i = 1 m ( y i − θ 0 − θ 1 x 1 i − θ 2 x 2 2 − . . . − θ n x n i ) 2 ⇒ ( y − X b ∙ θ ) T ∙ ( y − X b ∙ θ ) J(\theta) = \sum_{i=1}^m(y^i - \hat y^i)^2 \Rightarrow \sum_{i=1}^m(y^i - \theta_0- \theta_1 x_1^i-\theta_2 x_2^2-...-\theta_n x_n^i)^2 \Rightarrow (y-X_b \bullet \theta)^T \bullet (y-X_b \bullet \theta) J(θ)=i=1m(yiy^i)2i=1m(yiθ0θ1x1iθ2x22...θnxni)2(yXbθ)T(yXbθ)

一般采用均值作为目标函数:

1 m J ( θ ) = 1 m ( y − X b ∙ θ ) T ∙ ( y − X b ∙ θ ) \frac{1}{m}J(\theta) = \frac{1}{m} (y-X_b \bullet \theta)^T \bullet (y-X_b \bullet \theta) m1J(θ)=m1(yXbθ)T(yXbθ)
其中:
X b = ( 1 x 1 1 x 2 1 ⋯ x n 1 1 x 1 2 x 2 2 ⋯ x n 2 ⋮ ⋮ ⋱ ⋮ 1 x 1 i x 2 i ⋯ x n i ) X_b = \begin{pmatrix} 1 &amp; x_1^1 &amp; x_2^1 &amp; \cdots &amp; x_n^1\\ 1 &amp; x_1^2 &amp; x_2^2 &amp; \cdots &amp; x_n^2 \\ \vdots &amp; \vdots &amp; \ddots &amp; \vdots \\ 1 &amp; x_1^i &amp; x_2^i &amp; \cdots &amp; x_n^i \\ \end{pmatrix} Xb=111x11x12x1ix21x22x2ixn1xn2xni

损失(目标)函数对 θ \theta θ求梯度:

∇ J ( θ ) = ( ∂ J ∂ θ 0 ∂ J ∂ θ 1 ⋮ ∂ J ∂ θ n ) ⇒ ( ∑ i = 1 m 2 ( y i − X b i ∙ θ ) ( − 1 ) ∑ i = 1 m 2 ( y i − X b i ∙ θ ) ( − x 1 i ) ∑ i = 1 m 2 ( y i − X b i ∙ θ ) ( − x 2 i ) ⋮ ∑ i = 1 m 2 ( y i − X b i ∙ θ ) ( − x n i ) ) ⇒ 2 ( ∑ i = 1 m ( X b i ∙ θ − y i ) ∑ i = 1 m ( X b i ∙ θ − y i ) x 1 i ∑ i = 1 m ( X b i ∙ θ − y i ) x 2 i ⋮ ∑ i = 1 m ( X b i ∙ θ − y i ) x n i ) \nabla J(\theta) = \begin{pmatrix} \frac{\partial J}{\partial \theta_0}\\ \frac{\partial J}{\partial \theta_1}\\ \vdots \\ \frac{\partial J}{\partial \theta_n} \\ \end{pmatrix} \Rightarrow \begin{pmatrix} \sum_{i=1}^m2(y^i-X_b^i \bullet \theta)(-1)\\ \sum_{i=1}^m2(y^i-X_b^i \bullet \theta)(-x_1^i)\\\sum_{i=1}^m2(y^i-X_b^i \bullet \theta)(-x_2^i)\\ \vdots\\ \sum_{i=1}^m2(y^i-X_b^i \bullet \theta)(-x_n^i)\\ \end{pmatrix} \Rightarrow 2\begin{pmatrix} \sum_{i=1}^m(X_b^i \bullet \theta - y^i)\\ \sum_{i=1}^m(X_b^i \bullet \theta - y^i)x_1^i\\\sum_{i=1}^m(X_b^i \bullet \theta - y^i)x_2^i\\ \vdots\\ \sum_{i=1}^m(X_b^i \bullet \theta - y^i )x_n^i\\ \end{pmatrix} J(θ)=θ0Jθ1JθnJi=1m2(yiXbiθ)(1)i=1m2(yiXbiθ)(x1i)i=1m2(yiXbiθ)(x2i)i=1m2(yiXbiθ)(xni)2i=1m(Xbiθyi)i=1m(Xbiθyi)x1ii=1m(Xbiθyi)x2ii=1m(Xbiθyi)xni

梯度表达式向量化:

∇ J ( θ ) = 2 m ( X b ∙ θ − y ) T ∙ X b ⇒ 整 体 转 置 成 列 向 量 : 2 m X b T ∙ ( X b ∙ θ − y ) \nabla J(\theta) = \frac{2}{m} (X_b \bullet \theta - y)^T \bullet X_b \Rightarrow 整体转置成列向量: \frac{2}{m} X_b^T \bullet (X_b \bullet \theta - y) J(θ)=m2(Xbθy)TXbm2XbT(Xbθy)

代码实现

    def fit_gd(self, X_train, y_train, eta=0.01, n_iters=1e4):

        def J(theta, X_b, y):
            try:
                return np.sum((y - X_b.dot(theta)) ** 2) / len(y)
            except:
                return float('inf')

        def dJ(theta, X_b, y):
            return X_b.T.dot(X_b.dot(theta) - y) * 2. / len(X_b)

        def gradient_descent(X_b, y, initial_theta, eta, n_iters=1e4, epsilon=1e-8):

            theta = initial_theta
            cur_iter = 0

            while cur_iter < n_iters:
                gradient = dJ(theta, X_b, y)
                last_theta = theta
                theta = theta - eta * gradient
                if (abs(J(theta, X_b, y) - J(last_theta, X_b, y)) < epsilon):
                    break

                cur_iter += 1

            return theta

        X_b = np.hstack([np.ones((len(X_train), 1)), X_train])
        initial_theta = np.zeros(X_b.shape[1])
        theta = gradient_descent(X_b, y_train, initial_theta, eta, n_iters)
        return theta

后续还可以对 J ( θ ) J(\theta) J(θ)添加L1或L2正则化项,实现对 θ \theta θ的惩罚。

学习笔记参考:
《机器学习实战》和《Python3入门机器学习 经典算法与应用》

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值