准确率(Accuracy)、精确率(precision),召回率(recall)以及一些衍生指标经常被用作机器学习/深度学习任务的评价标准。
混淆矩阵
准确率(Accuracy)
指标 | 计算 |
---|---|
准确率(Accuracy) | ( TP + TN ) / ( P +N ) |
就是整体判断正确性,但是没有正确率这种说法。
精确率(precision)与召回率(recall)
指标 | 计算 |
---|---|
精确率( precision ) | TP / ( TP+FP ) = TP / P |
召回率(recall) | TP / (TP + FN ) = TP / T |
精确度意义:预测为正例的样本中真实正例比例(查准)。
召回率意义:所有真实正例中被预测为正例的比例(查全)。
从两者公式的分母就可以看出,这两个值的的大小有天然的制约关系。FP越大,意味着越倾向于把负例判为正,FN越大意味着越倾向于把正例判为负。因此精确率提高必然意味着召回率会降低,反之同样,实际应用中可以根据需求选择优先提升其中一个指标,或者使用F1-score进行平衡。
F1-score:2×recall×precision / ( recall + precision )
这两个指标常常用在正负样本不平均的任务当中。