准确率(Accuracy)、精确率(precision),召回率(recall)理解

准确率(Accuracy)、精确率(precision),召回率(recall)以及一些衍生指标经常被用作机器学习/深度学习任务的评价标准。

混淆矩阵

矩阵

准确率(Accuracy)

指标计算
准确率(Accuracy)( TP + TN ) / ( P +N )

就是整体判断正确性,但是没有正确率这种说法。

精确率(precision)与召回率(recall)

指标计算
精确率( precision )TP / ( TP+FP ) = TP / P
召回率(recall)TP / (TP + FN ) = TP / T

精确度意义:预测为正例的样本中真实正例比例(查准)。
召回率意义:所有真实正例中被预测为正例的比例(查全)。

从两者公式的分母就可以看出,这两个值的的大小有天然的制约关系。FP越大,意味着越倾向于把负例判为正,FN越大意味着越倾向于把正例判为负。因此精确率提高必然意味着召回率会降低,反之同样,实际应用中可以根据需求选择优先提升其中一个指标,或者使用F1-score进行平衡。

F1-score:2×recall×precision / ( recall + precision )

这两个指标常常用在正负样本不平均的任务当中。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值